Artículo

Ramírez, C.L.; Petruk, A.; Bringas, M.; Estrin, D.A.; Roitberg, A.E.; Marti, M.A.; Capece, L. "Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions" (2016) Journal of Chemical Theory and Computation. 12(7):3390-3397
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Heme proteins are ubiquitous in nature and perform many diverse functions in all kingdoms of life. Many of these functions are related to large-scale conformational transitions and allosteric processes. Sampling of these large conformational changes is computationally very challenging. In this context, coarse-grain simulations emerge as an efficient approach to explore the conformational landscape. In this work, we present a coarse-grained model of the heme group and thoroughly validate this model in different benchmark examples, which include the monomeric heme proteins myoglobin and neuroglobin and the tetrameric human hemoglobin where we evaluated the method's ability to explore conformational changes (as the formation of hexacoordinated species) and allosteric transitions (as the well-known R → T transition). The obtained results are compared with atomistic molecular dynamics simulations. Overall, the results indicate that this approach conserves the essential dynamical information on different allosteric processes. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions
Autor:Ramírez, C.L.; Petruk, A.; Bringas, M.; Estrin, D.A.; Roitberg, A.E.; Marti, M.A.; Capece, L.
Filiación:Dto. de Química Inorgánica, Analítica y Química Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICET, Buenos Aires, C1428EGA, Argentina
Dto. de Química Biologica, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/IQUIBICEN-CONICET, Buenos Aires, C1428EGA, Argentina
Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, United States
Palabras clave:heme; protein; chemistry; human; molecular model; protein conformation; reproducibility; Heme; Humans; Models, Molecular; Protein Conformation; Proteins; Reproducibility of Results
Año:2016
Volumen:12
Número:7
Página de inicio:3390
Página de fin:3397
DOI: http://dx.doi.org/10.1021/acs.jctc.6b00278
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
CODEN:JCTCC
CAS:heme, 14875-96-8; protein, 67254-75-5; Heme; Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v12_n7_p3390_Ramirez

Referencias:

  • Gros, G., Wittenberg, B.A., Jue, T., Myoglobin's Old and New Clothes: From Molecular Structure to Function in Living Cells (2010) J. Exp. Biol., 213, pp. 2713-2725
  • Perutz, M.F., Wilkinson, A.J., Paoli, M., Dodson, G.G., The Stereochemical Mechanism of the Cooperative Effects in Hemoglobin Revisited (1998) Annu. Rev. Biophys. Biomol. Struct., 27, pp. 1-34
  • Danielson, P.B., The Cytochrome P450 Superfamily: Biochemistry, Evolution and Drug Metabolism in Humans (2002) Curr. Drug Metab., 3, pp. 561-597
  • Margoliash, E., Primary Structure and Evolution of Cytochrome C (1963) Proc. Natl. Acad. Sci. U. S. A., 50, pp. 672-679
  • Frauenfelder, H., McMahon, B.H., Fenimore, P.W., Myoglobin: The Hydrogen Atom of Biology and a Paradigm of Complexity (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 8615-8617
  • Saunders, M.G., Voth, G.A., Coarse-Graining Methods for Computational Biology (2013) Annu. Rev. Biophys., 42, pp. 73-93
  • Hills, R.D., Lu, L., Voth, G.A., Multiscale Coarse-Graining of the Protein Energy Landscape (2010) PLoS Comput. Biol., 6, p. e1000827
  • Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.-J., The MARTINI Coarse-Grained Force Field: Extension to Proteins (2008) J. Chem. Theory Comput., 4, pp. 819-834
  • Darré, L., MacHado, M.R., Brandner, A.F., González, H.C., Ferreira, S., Pantano, S., SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics (2015) J. Chem. Theory Comput., 11, pp. 723-739
  • Abe, H., Go, N., Noninteracting Local-Structure Model of Folding and Unfolding Transition in Globular Proteins. II. Application to Two-Dimensional Lattice Proteins (1981) Biopolymers, 20, pp. 1013-1031
  • Ward, A.B., Guvench, O., Hills, R.D., Coarse Grain Lipid-protein Molecular Interactions and Diffusion with MsbA Flippase (2012) Proteins: Struct., Funct., Genet., 80, pp. 2178-2190
  • Pesce, A., Bolognesi, M., Bocedi, A., Ascenzi, P., Dewilde, S., Moens, L., Hankeln, T., Burmester, T., Neuroglobin and Cytoglobin. Fresh Blood for the Vertebrate Globin Family (2002) EMBO Rep., 3, pp. 1146-1151
  • Berendsen, H., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular-Dynamics with Coupling to an External Bath (1984) J. Chem. Phys., 81, p. 3684
  • Capece, L., Boechi, L., Perissinotti, L.L., Arroyo-Mañez, P., Bikiel, D.E., Smulevich, G., Marti, M.A., Estrin, D.A., Small Ligand-Globin Interactions: Reviewing Lessons Derived from Computer Simulation (2013) Biochim. Biophys. Acta, Proteins Proteomics, 1834, pp. 1722-1738
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric Oxide Reactivity with Globins as Investigated through Computer Simulation (2008) Methods Enzymol., 437, pp. 477-498
  • Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2010), AMBER 11, University of California, San Francisco; Yang, F., Phillips, Jr.G.N., Crystal Structures of CO-, Deoxy- and Met-Myoglobins at Various pH Values (1996) J. Mol. Biol., 256, pp. 762-774
  • Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity (2003) Structure, 11, pp. 1087-1095
  • Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R., The Crystal Structure of Human Deoxyhaemoglobin at 1.74 A Resolution (1984) J. Mol. Biol., 175, pp. 159-174
  • Shaanan, B., Structure of Human Oxyhaemoglobin at 2.1 A Resolution (1983) J. Mol. Biol., 171, pp. 31-59
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E., Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field (2010) Proteins: Struct., Funct., Genet., 78, pp. 1950-1958
  • Capece, L., Marti, M.A., Bidon-Chanal, A., Nadra, A., Luque, F.J., Estrin, D.A., High Pressure Reveals Structural Determinants for Globin Hexacoordination: Neuroglobin and Myoglobin Cases (2009) Proteins: Struct., Funct., Genet., 75, pp. 885-894
  • Boron, I., Capece, L., Pennacchietti, F., Wetzler, D.E., Bruno, S., Abbruzzetti, S., Chisari, L., Nadra, A.D., Engineered Chimeras Reveal the Structural Basis of Hexacoordination in Globins: A Case Study of Neuroglobin and Myoglobin (2015) Biochim. Biophys. Acta, Gen. Subj., 1850, pp. 169-177
  • Amadei, A., Linssen, A.B., Berendsen, H.J., Essential Dynamics of Proteins (1993) Proteins: Struct., Funct., Genet., 17, pp. 412-425
  • Perutz, M.F., Mathews, F.S., An X-Ray Study of Azide Methaemoglobin (1966) J. Mol. Biol., 21, pp. 199-202
  • Boechi, L., Arrar, M., Martí, M.A., Olson, J.S., Roitberg, A.E., Estrin, D.A., Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7 (2013) J. Biol. Chem., 288, pp. 6754-6762
  • Fischer, S., Olsen, K.W., Nam, K., Karplus, M., Unsuspected Pathway of the Allosteric Transition in Hemoglobin (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 5608-5613
  • Hub, J.S., Kubitzki, M.B., De Groot, B.L., Spontaneous Quaternary and Tertiary T-R Transitions of Human Hemoglobin in Molecular Dynamics Simulation (2010) PLoS Comput. Biol., 6, p. e1000774
  • Jones, E.M., Balakrishnan, G., Spiro, T.G., Heme Reactivity Is Uncoupled from Quaternary Structure in Gel-Encapsulated Hemoglobin: A Resonance Raman Spectroscopic Study (2012) J. Am. Chem. Soc., 134, pp. 3461-3471
  • Cammarata, M., Levantino, M., Wulff, M., Cupane, A., Unveiling the Timescale of the R-T Transition in Human Hemoglobin (2010) J. Mol. Biol., 400, pp. 951-962

Citas:

---------- APA ----------
Ramírez, C.L., Petruk, A., Bringas, M., Estrin, D.A., Roitberg, A.E., Marti, M.A. & Capece, L. (2016) . Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions. Journal of Chemical Theory and Computation, 12(7), 3390-3397.
http://dx.doi.org/10.1021/acs.jctc.6b00278
---------- CHICAGO ----------
Ramírez, C.L., Petruk, A., Bringas, M., Estrin, D.A., Roitberg, A.E., Marti, M.A., et al. "Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions" . Journal of Chemical Theory and Computation 12, no. 7 (2016) : 3390-3397.
http://dx.doi.org/10.1021/acs.jctc.6b00278
---------- MLA ----------
Ramírez, C.L., Petruk, A., Bringas, M., Estrin, D.A., Roitberg, A.E., Marti, M.A., et al. "Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions" . Journal of Chemical Theory and Computation, vol. 12, no. 7, 2016, pp. 3390-3397.
http://dx.doi.org/10.1021/acs.jctc.6b00278
---------- VANCOUVER ----------
Ramírez, C.L., Petruk, A., Bringas, M., Estrin, D.A., Roitberg, A.E., Marti, M.A., et al. Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions. J. Chem. Theory Comput. 2016;12(7):3390-3397.
http://dx.doi.org/10.1021/acs.jctc.6b00278