Artículo

Colombo, L.; González, G.; Marshall, G.; Molina, F.V.; Soba, A.; Suarez, C.; Turjanski, P. "Ion transport in tumors under electrochemical treatment: In vivo, in vitro and in silico modeling" (2007) Bioelectrochemistry. 71(2):223-232
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The electrochemical treatment of cancer (EChT) consists in the passage of a direct electric current through two or more electrodes inserted locally in the tumor tissue. The extreme pH changes induced have been proposed as the main tumor destruction mechanism. Here, we study ion transport during EChT through a combined modeling methodology: in vivo modeling with BALB/c mice bearing a subcutaneous tumor, in vitro modeling with agar and collagen gels, and in silico modeling using the one-dimensional Nernst-Planck and Poisson equations for ion transport in a four-ion electrolyte. This combined modeling approach reveals that, under EChT modeling, an initial condition with almost neutral pH evolves between electrodes into extreme cathodic alkaline and anodic acidic fronts moving towards each other, leaving the possible existence of a biological pH region between them; towards the periphery, the pH decays to its neutral values. pH front tracking unveils a time scaling close to t1/2, signature of a diffusion-controlled process. These results could have significant implications in EChT optimal operative conditions and dose planning, in particular, in the way in which the evolving EChT pH region covers the active cancer cells spherical casket. © 2007 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Ion transport in tumors under electrochemical treatment: In vivo, in vitro and in silico modeling
Autor:Colombo, L.; González, G.; Marshall, G.; Molina, F.V.; Soba, A.; Suarez, C.; Turjanski, P.
Filiación:Depto. de Inmunobiología, Inst. de Oncología Angel H. Roffo, Universidad de Buenos Aires, C1417DTB Buenos Aires, Argentina
Laboratorio de Sistemas Complejos, Departamento de Computación, FCEyN, C1428EGA Buenos Aires, Argentina
INQUIMAE, FCEyN, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Palabras clave:Computational modeling; Electrochemical treatment; Ion transport; Tumors; Charge transfer; Collagen; Computational methods; Electric currents; Electrochemistry; Electrodes; Patient treatment; Computational modeling; Electrochemical treatment; Ion transport; Poisson equations; Tumors; agar; collagen gel; electrolyte; acidity; alkalinity; animal experiment; animal model; article; Bagg albino mouse; cancer model; computer model; controlled study; electric current; electrochemistry; electrode; human; human cell; in vitro study; in vivo study; ion transport; male; mouse; nonhuman; pH; subcutaneous tissue tumor; Animals; Computational Biology; Electric Conductivity; Electric Stimulation; Electrochemistry; Electrodes; Female; Humans; Hydrogen-Ion Concentration; Ion Transport; Mice; Mice, Inbred BALB C; Models, Biological; Necrosis; Neoplasms; Mus
Año:2007
Volumen:71
Número:2
Página de inicio:223
Página de fin:232
DOI: http://dx.doi.org/10.1016/j.bioelechem.2007.07.001
Título revista:Bioelectrochemistry
Título revista abreviado:Bioelectrochemistry
ISSN:15675394
CODEN:BIOEF
CAS:agar, 9002-18-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v71_n2_p223_Colombo

Referencias:

  • Nilsson, E., von Euler, H., Berendson, J., Thorne, A., Wersall, P., Naslund, I., Lagerstedt, A., Narfstrom, K., J. Olsson, electrochemical treatment of tumours (2000) Bioelectrochemistry, 51, pp. 1-11
  • Nordenstrom, B., (1983) Biologically Closed Electrical Circuits: Clinical, Experimental and Theoretical Evidence for an Additional Circulatory System, , Nordic Medical Publications, Stockholm, Sweeden
  • Nordenstrom, B., Electrochemical treatment of cancer i: variable response to anodic and cathodic fields (1989) American Journal of Clinical Oncology, 12 (6), pp. 530-536
  • Xin, Y., Organization and spread of electrochemical therapy (EChT) in china (1994) European Journal of Surgery. Supplement, 574, pp. 25-30
  • Xin, Y., The clinical advance in application of EChT within the past ten years (1998) Preprints from the 2nd international symposium on electrochemical treatment, pp. 81-92
  • Miklavcic, D., Sersa, G., Novakovic, S., Rebersek, S., Tumor bioelectric potential and its possible exploitation for tumor growth retardation (1990) Journal of Bioelectricity, 9 (2), pp. 133-149
  • Miklavcic, D., Sersa, G., Kryzanowski, M., Novakovic, S., Bobanovic, F., Golouh, R., Vodovnik, L., Tumor treatment by direct electric current: tumor temperature and pH, electrode material and configuration (1993) Bioelectrochemistry and Bioenergetics Book Chapter, 52, pp. 417-427
  • Sersa, G., Miklavcic, D., The feasibility of low level direct current electrotherapy for regional cancer treatment (1993) Regional Cancer Treatment, 6 (1), pp. 31-35
  • Miklavcic, D., Fajgelj, A., Sersa, G., Tumour treatment by direct electric current: electrode material deposition (1994) Bioelectrochemistry and Bioenergetics, 35 (1-2), pp. 93-97
  • Sersa, G., Novakovic, S., Miklavcic, D., Potentiation of bleomycin antitumor effectiveness by electrotherapy (1993) Cancer Letters, 69 (2), pp. 81-84
  • von Euler, H., Strahle, K., Thorne, A., Yongqing, G., Cell proliferation and apoptosis in rat mammary cancer after electrochemical treatment (EChT) (2004) Bioelectrochemistry, 62, pp. 57-65
  • Cabrales, L., Luna, L., La electroterapia: una alternativa terapéutica para el tratamiento de tumores (2003) Revista Cubana de Medicina, 42 (6)
  • Ciria, H., Lpez, D., La electroquimioterapia: una nueva alternativa teraputica en la oncologa (2001) Revista Cubana de Oncologa, 17 (3), pp. 188-194
  • Ciria, H., Quevedo, M., Cabrales, L., Bruzon, R., Salas, M., Pena, O., Gonzlez, T., Flores, J., Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma sa-37 tumors (2004) BMC Cancer, 4 (1), p. 87
  • Neumann, E., Rosenheck, K., Permeability changes induced by electric impulses in vesicular membranes (1972) Journal of Membrane Biology, 10, p. 279
  • Mir, L., Belehradek, M., Domenge, C., Orlowski, S., Poddevin, B., Belehradek Jr., J., Schwaab, G., Paoletti, C., Electrochemotherapy, a novel antitumor treatment: first clinical trial (1991) Comptes Rendus de l'Academie des Sciences. Serie III, Sciences de la vie, 313 (13), pp. 613-618
  • Rudolf, Z., Stabuc, B., Cemazar, M., Miklavcic, D., Vodovnik, L., Sersa, G., Electrochemotherapy with bleomycin. The first clinical experience in malignant melanoma patients (1995) Radiology and Oncology, 29 (3), pp. 229-235
  • Sersa, G., The state-of-the-art of electrochemotherapy before the scope study; advantages and clinical uses (2006) European Journal of Cancer. Supplement, 4 (11), pp. 52-59
  • Knowles, M., Selby, P.P., (2005) Introduction to the Cellular and Molecular Biology of Cancer. 4th ed, , Oxford University Press, Oxford GB
  • Netti, P., Berk, D., Swartz, M., Grodzinsky, A., Jain, R., Role of extracellular matrix assembly in interstitial transport in solid tumors (2000) Cancer Research, 60, pp. 2497-2503
  • Ramanujan, S., Pluen, A., McKee, T., Brown, E., Boucher, Y., Jain, R., Diffussion and convection in collagen gels: implications for transport in the tumor interstitium (2002) Biophysics Journal, 83 (3), pp. 1650-1660
  • Preziosi, L., (2003) Cancer Modelling and Simulation, , CHAPMAN & HALL/CRC, London, UK
  • Baxter, L.T., Jain, R.K., Transport of fluid and macromolecules in tumors. i. Role of interstitial pressure and convection (1989) Microvascular Research, 37 (1), pp. 77-104
  • Baxter, L.T., Jain, R.K., Transport of fluid and macromolecules in tumors. ii. Role of heterogeneous perfusion and lymphatics (1990) Microvascular Research, 40 (2), pp. 246-263
  • Baxter, L.T., Jain, R.K., Transport of fluid and macromolecules in tumors: Iii. role of binding and metabolism (1991) Microvascular Research, 41 (1), pp. 5-23
  • Baxter, L.T., Jain, R.K., Transport of fluid and macromolecules in tumors. iv. A microscopic model of the perivascular distribution (1991) Microvascular Research, 41 (2), pp. 252-272
  • Nilsson, E., Berendson, J., Fontes, E., Development of a dosage method for electrochemical treatment of tumours: a simplified mathematical model (1998) Bioelectrochemistry and Bioenergetics, 47, pp. 11-18
  • Nilsson, E., Berendson, J., Fontes, E., Electrochemical treatment of tumours: a simplified mathematical model (1999) Journal of Electroanalytical Chemistry, 460, pp. 88-99
  • Nilsson, E., Berendson, J., Fontes, E., Impact of chlorine and acidification in the electrochemical treatment of tumours (2000) Journal of Applied Electrochemistry, 30 (12), pp. 1321-1333
  • Nilsson, E., Fontes, E., Mathematical modeling of physicochemical reactions and transport processes occurring around a platinum cathode during the electrochemical treatment of tumours (2001) Bioelectrochemistry, 53, pp. 213-224
  • Marshall, G., Mocskos, P., A growth model for ramified electrochemical deposition in the presence of diffusion, migration and electroconvection (1997) Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 55, p. 549
  • Marshall, G., Mocskos, P., Swinney, H.L., Huth, J.M., Buoyancy and electrical driven convection (1999) Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 59, p. 2157
  • Dengra, S., Marshall, G., Molina, F., Front tracking in thin-layer electrodeposition (2000) Journal of the Physical Society of Japan, 69 (3), pp. 963-971
  • Gonzalez, G., Marshall, G., Molina, F.V., Dengra, S., Rosso, M., Viscosity effects in thin-layer electrodeposition (2001) Journal of The Electrochemical Society, 148 (7), pp. C479-C487
  • Gonzalez, G., Marshall, G., Molina, F., Dengra, S., Transition from gravito- to electroconvective regimes in thin-layer electrodeposition (2002) Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 65 (5), p. 051607
  • Marshall, G., Mocskos, E., Molina, F.V., Dengra, S., Three-dimensional nature of ion transport in thin-layer electrodeposition (2003) Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 68 (2), p. 021607
  • Marshall, G., Molina, F., Soba, A., Ion transport in thin cell electrodeposition: modelling three-ion electrolytes in dense branched morphology under constant voltage and current conditions (2005) Electrochimica Acta, 50, pp. 3436-3445
  • Lemberg, R., Legge, J., (1949) Haemain Compounds and Bile Pigments, , Interscience Publishers, Inc., New York
  • Samuelsson, L., Olin, T., Berg, N., Electrolytic destruction of lung tissue in the rabbit (1980) Acta Radiologica. Diagnosis, 21 (4), pp. 447-454
  • Pluen, A., Boucher, Y., Ramanujan, S., McKee, T., Gohongi, T., di Tomaso, E., Brown, E., Jain, R., Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs subcutaneous tumors (2001) Proceedings of the National Academy of Sciences, 98 (8), pp. 4628-4633

Citas:

---------- APA ----------
Colombo, L., González, G., Marshall, G., Molina, F.V., Soba, A., Suarez, C. & Turjanski, P. (2007) . Ion transport in tumors under electrochemical treatment: In vivo, in vitro and in silico modeling. Bioelectrochemistry, 71(2), 223-232.
http://dx.doi.org/10.1016/j.bioelechem.2007.07.001
---------- CHICAGO ----------
Colombo, L., González, G., Marshall, G., Molina, F.V., Soba, A., Suarez, C., et al. "Ion transport in tumors under electrochemical treatment: In vivo, in vitro and in silico modeling" . Bioelectrochemistry 71, no. 2 (2007) : 223-232.
http://dx.doi.org/10.1016/j.bioelechem.2007.07.001
---------- MLA ----------
Colombo, L., González, G., Marshall, G., Molina, F.V., Soba, A., Suarez, C., et al. "Ion transport in tumors under electrochemical treatment: In vivo, in vitro and in silico modeling" . Bioelectrochemistry, vol. 71, no. 2, 2007, pp. 223-232.
http://dx.doi.org/10.1016/j.bioelechem.2007.07.001
---------- VANCOUVER ----------
Colombo, L., González, G., Marshall, G., Molina, F.V., Soba, A., Suarez, C., et al. Ion transport in tumors under electrochemical treatment: In vivo, in vitro and in silico modeling. Bioelectrochemistry. 2007;71(2):223-232.
http://dx.doi.org/10.1016/j.bioelechem.2007.07.001