Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA. © 2016 IOP Publishing Ltd and Sissa Medialab srl.

Registro:

Documento: Artículo
Título:Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers
Autor:Multitudinario:450
Filiación:Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF, CONICET, Villa Martelli, Argentina
Departamento de Física, FCEyN, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
IFLP, Universidad Nacional de la Plata, CONICET, La Plata, Argentina
Instituto de Astronomía y Física Del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina
Instituto de Física de Rosario (IFIR), CONICET, U.N.R., Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina
Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Universidad Tecnológica Nacional, Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina
Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
Observatorio Pierre Auger, Malargüe, Argentina
Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Buenos Aires, Argentina
University of Adelaide, Adelaide, SA, Australia
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil
Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brazil
Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
Universidade Federal da Bahia, Salvador, BA, Brazil
Universidade Federal de Pelotas, Pelotas, RS, Brazil
Universidade Federal Do ABC, Santo André, SP, Brazil
Universidade Federal Do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
Universidad Industrial de Santander, Bucaramanga, Colombia
Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
Palacky University, RCPTM, Olomouc, Czech Republic
Institut de Physique Nucléaire D'Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire de L'Accélérateur Linéaire (LAL), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-Alpes, CNRS, IN2P3, Grenoble, France
Station de Radioastronomie de Nançay, Observatoire de Paris, CNRS, INSU, Nançay, France
SUBATECH, École des Mines de Nantes, CNRS-IN2P3, Université de Nantes, Nantes, France
Bergische Universität Wuppertal, Fachbereich C - Physik, Wuppertal, Germany
Karlsruhe Institute of Technology (KIT), Campus South, Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Campus North, Institut für Kernphysik (IKP), Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Campus North, Institut für Prozessdatenverarbeitung und Elektronik (IEKP), Karlsruhe, Germany
Max-Planck-Institut für Radioastronomie, Bonn, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany
Universität Siegen, Fachbereich 7 Physik, Experimentelle Teilchenphysik, Siegen, Germany
Università di Milano, Sezione INFN, Milan, Italy
Università di Napoli Federico II, Sezione INFN, Napoli, Italy
Università di Roma II Tor Vergata, Sezione INFN, Roma, Italy
Università di Catania, Sezione INFN, Catania, Italy
Università di Torino, Sezione INFN, Torino, Italy
Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Sezione INFN, Lecce, Italy
Dipartimento di Scienze Fisiche e Chimiche, Università Dell'Aquila, Sezione INFN, L'Aquila, Italy
Gran Sasso Science Institute (INFN), L'Aquila, Italy
Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
INFN, Laboratori Nazionali Del Gran Sasso, Assergi (L'Aquila), Italy
Osservatorio Astrofisico di Torino (INAF), Torino, Italy
INFN, Sezione di Torino, Italy
Università di Torino, Torino, Italy
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), México, D.F., Mexico
Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), México, D.F., Mexico
Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
Universidad Nacional Autónoma de México, México, D.F., Mexico
IMAPP, Radboud University Nijmegen, Nijmegen, Netherlands
KVI, Center for Advanced Radiation Technology, University of Groningen, Groningen, Netherlands
Nikhef, Science Park, Amsterdam, Netherlands
ASTRON, Dwingeloo, Netherlands
Institute of Nuclear Physics PAN, Krakow, Poland
University of Łódz, Łódz, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Instituto Superior Técnico, Universidade de Lisboa (UL), Portugal
Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
Institute of Space Science, Bucharest-Magurele, Romania
University of Bucharest, Physics Department, Bucharest, Romania
University Politehnica of Bucharest, Bucharest, Romania
Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia
Laboratory for Astroparticle Physics, University of Nova Gorica, Nova Gorica, Slovenia
Universidad Complutense de Madrid, Madrid, Spain
Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
Universidad de Granada, C.A.F.P.E., Granada, Spain
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
Case Western Reserve University, Cleveland, OH, United States
Colorado School of Mines, Golden, CO, United States
Colorado State University, Fort Collins, CO, United States
Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, United States
Fermilab, Batavia, IL, United States
Louisiana State University, Baton Rouge, LA, United States
Michigan Technological University, Houghton, MI, United States
New York University, New York, NY, United States
Northeastern University, Boston, MA, United States
Ohio State University, Columbus, OH, United States
Pennsylvania State University, University Park, PA, United States
University of Chicago, Enrico Fermi Institute, Chicago, IL, United States
University of Hawaii, Honolulu, HI, United States
University of Nebraska, Lincoln, NE, United States
University of New Mexico, Albuquerque, NM, United States
School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
Vrije Universiteit Brussels, Brussels, Belgium
Palabras clave:Calibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers, sources, particle-beams); Pattern recognition; Timing detectors; Clocks; Cosmic ray detectors; Cosmic ray measurement; Cosmic rays; Cosmology; Global positioning system; Pattern recognition; Software radio; Synchronization; Tracking (position); Automatic dependent surveillance - broadcasts; Calibration method; Cluster finding; Cosmic ray air showers; Fitting method; Software-defined radios; Timing detectors; Timing synchronization; Calibration
Año:2016
Volumen:11
Número:1
DOI: http://dx.doi.org/10.1088/1748-0221/11/01/P01018
Título revista:Journal of Instrumentation
Título revista abreviado:J. Instrum.
ISSN:17480221
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17480221_v11_n1_p_Multitudinario

Referencias:

  • Huege, T., The renaissance of radio detection of cosmic rays (2014) Braz. J. Phys., 44, p. 520
  • Apel, W.D., Reconstruction of the energy and depth of maximum of cosmic-ray air-showers from LOPES radio measurements (2014) Phys. Rev. D, 90, p. 062001. , [arXiv:1408.2346]
  • Aab, A., The energy in the radio signal of extensive air showers (2015) Phys. Rev. Lett., , submitted to
  • Aab, A., Energy estimation of cosmic rays with the engineering radio array of the Pierre Auger Observatory (2015) Phys. Rev. D, , submitted to, [arXiv:1508.04267]
  • Schröder, F.G., Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array (2015) Nucl. Instrum. Meth. A, , in press [arXiv:1601.00462]
  • Buitink, S., Method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles (2014) Phys. Rev. D, 90, p. 082003. , [arXiv:1408.7001]
  • Bezyazeekov, P.A., Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex (2016) JCAP, 1, p. 052. , [arXiv:1509.05652]
  • Falcke, H., Detection and imaging of atmospheric radio flashes from cosmic ray air showers (2005) Nature, 435, p. 313. , [astro-ph/0505383]
  • Apel, W.D., The wavefront of the radio signal emitted by cosmic ray air showers (2014) JCAP, 9, p. 025. , [arXiv:1404.3283]
  • Schröder, F.G., New method for the time calibration of an interferometric radio antenna array (2010) Nucl. Instrum. Meth. A, 615, p. 277. , [arXiv:1002.3775]
  • Corstanje, A., The shape of the radio wavefront of extensive air showers as measured with LOFAR (2015) Astropart. Phys., 61, p. 22. , [arXiv:1404.3907]
  • Serrano, J., (2009) The White Rabbit Project, in Proceedings of ICALEPCS TUC004, , Kobe, Japan
  • Huege, T., Radio detection of cosmic rays in the Pierre Auger Observatory (2010) Nucl. Instrum. Meth. A, 617, p. 484. , [arXiv:0906.4970]
  • Aab, A., The Pierre Auger cosmic ray observatory (2015) Nucl. Instrum. Meth. A, 798, p. 172. , [arXiv:1502.01323]
  • (2008) M12M Timing Oncore™Receiver, , Technical Data Sheet, Rev. 1.1
  • Revenu, B., Autonomous detection and analysis of radio emission from air showers at the Pierre Auger Observatory (2011) Proceedings of 32nd International Cosmic Ray Conference (ICRC), 3, p. 176. , Beijing, China, [arXiv:1107.4807]
  • Abreu, P., Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory (2012) JINST, 7, p. P11023. , [arXiv:1211.0572]
  • Federal Aviation Administration, (2010) Automatic Dependent Surveillance Broadcast (ADS-B) Out Performance Requirements to Support Air Traffic Control (ATC) Service, 75, p. 103. , Federal Register
  • Private communication with Airbus and the DGAC, "direction Générale de L'aviation Civile", the French National Authority for Civilian Aviation
  • Abreu, P., Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory (2011) Nucl. Instrum. Meth. A, 635, p. 92. , [arXiv:1101.4473]
  • Abreu, P., Antennas for the detection of radio emission pulses from cosmic-ray (2012) JINST, 7, p. P10011. , [arXiv:1209.3840]

Citas:

---------- APA ----------
(2016) . Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers. Journal of Instrumentation, 11(1).
http://dx.doi.org/10.1088/1748-0221/11/01/P01018
---------- CHICAGO ----------
Multitudinario:450. "Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers" . Journal of Instrumentation 11, no. 1 (2016).
http://dx.doi.org/10.1088/1748-0221/11/01/P01018
---------- MLA ----------
Multitudinario:450. "Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers" . Journal of Instrumentation, vol. 11, no. 1, 2016.
http://dx.doi.org/10.1088/1748-0221/11/01/P01018
---------- VANCOUVER ----------
Multitudinario:450. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers. J. Instrum. 2016;11(1).
http://dx.doi.org/10.1088/1748-0221/11/01/P01018