Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal. © 2012 IOP Publishing Ltd and Sissa Medialab srl.

Registro:

Documento: Artículo
Título:Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory
Autor:Multitudinario:515
Filiación:Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Argentina
Departamento de Física, FCEyN, Universidad de Buenos Aires y CONICET, Argentina
IFLP, Universidad Nacional de la Plata and CONICET, La Plata, Argentina
Instituto de Astronomía y Física Del Espacio (CONICET-UBA), Buenos Aires, Argentina
Instituto de Física de Rosario (IFIR), CONICET/U.N.R., Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina
Instituto de Tecnologías en Detección y Astropartí culas (CNEA, CONICET, UNSAM, Buenos Aires, Argentina
National Technological University, Faculty Mendoza, CONICET/CNEA, Mendoza, Argentina
Observatorio Pierre Auger, Malargüe, Argentina
Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Buenos Aires, Argentina
University of Adelaide, Adelaide, SA, Australia
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brazil
Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
Universidade Estadual de Feira de Santana, Brazil
Universidade Estadual Do Sudoeste da Bahia, Vitoria da Conquista, BA, Brazil
Universidade Federal da Bahia, Salvador, BA, Brazil
Universidade Federal do ABC, Santo André SP, Brazil
Universidade Federal Do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
Rudjer Bošković Institute, 10000 Zagreb, Croatia
Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
Palacky University, RCPTM, Olomouc, Czech Republic
Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire AstroParticule et Cosmologie (APC), Université Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris 11, CNRS-IN2P3, France
Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Grenoble, France
SUBATECH, École des Mines de Nantes, Université de Nantes, France
Bergische Universität Wuppertal, Wuppertal, Germany
Karlsruhe Institute of Technology - Campus North, Institut für Kernphysik, Karlsruhe, Germany
Karlsruhe Institute of Technology - Campus North, Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
Karlsruhe Institute of Technology - Campus South, Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
Max-Planck-Institut für Radioastronomie, Bonn, Germany
RWTH Aachen University, III, Physikalisches Institut A, Aachen, Germany
Universität Hamburg, Hamburg, Germany
Universität Siegen, Siegen, Germany
Dipartimento di Fisica dell'Università, INFN, Genova, Italy
Università dell'Aquila, INFN, L'Aquila, Italy
Università di Milano, Sezione INFN, Milan, Italy
Università di Napoli Federico II, Sezione INFN, Napoli, Italy
Università di Roma II Tor Vergata and Sezione, INFN, Roma, Italy
Università di Catania and Sezione, INFN, Catania, Italy
Università di Torino and Sezione, INFN, Torino, Italy
Dipartimento di Matematica e Fisica E. de Giorgi dell'Università Del Salento and Sezione, INFN, Lecce, Italy
Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
Istituto di Fisica Dello Spazio Interplanetario (INAF), Università di Torino and Sezione, INFN, Torino, Italy
INFN, Laboratori Nazionali Del Gran Sasso, Assergi (L'Aquila), Italy
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), México, Mexico
Universidad Michoacana de San Nicolas de Hidalgo, Michoacan, Morelia, Mexico
Universidad Nacional Autonoma de Mexico, MEX, D.F, Mexico
IMAPP, Radboud University, Nijmegen, Netherlands
Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
Nikhef, Science Park, Amsterdam, Netherlands
ASTRON, Dwingeloo, Netherlands
Institute of Nuclear Physics PAN, Krakow, Poland
University of Lódź, Lódź, Poland
LIP and Instituto Superior Técnico, Technical University of Lisbon, Portugal
Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest- Magurele, Romania
University of Bucharest, Physics Department, Romania
University Politehnica of Bucharest, Romania
J. Stefan Institute, Ljubljana, Slovenia
Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain
Universidad Complutense de Madrid, Madrid, Spain
Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
Universidad de Granada and C.A.F.P.E., Granada, Spain
Universidad de Santiago de Compostela, Spain
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
School of Physics and Astronomy, University of Leeds, United Kingdom
Argonne National Laboratory, Argonne, IL, United States
Case Western Reserve University, Cleveland, OH, United States
Colorado School of Mines, Golden, CO, United States
Colorado State University, Fort Collins, CO, United States
Colorado State University, Pueblo, CO, United States
Fermilab, Batavia, IL, United States
Los Alamos National Laboratory, Los Alamos, NM, United States
Louisiana State University, Baton Rouge, LA, United States
Michigan Technological University, Houghton, MI, United States
New York University, New York, NY, United States
Northeastern University, Boston, MA, United States
Ohio State University, Columbus, OH, United States
Pennsylvania State University, University Park, PA, United States
Southern University, Baton Rouge, LA, United States
University of Chicago, Enrico Fermi Institute, Chicago, IL, United States
University of Hawaii, Honolulu, HI, United States
University of Nebraska, Lincoln, NE, United States
University of New Mexico, Albuquerque, NM, United States
University of Wisconsin, Madison, WI, United States
University of Wisconsin, Milwaukee, WI, United States
Institute for Nuclear Science and Technology (INST), Hanoi, Viet Nam
Station de Radioastronomie de Nançay, Observatoire de Paris, Nançay, France
University of Maryland, United States
Universite de Lausanne, Switzerland
Konan University, Kobe, Japan
NYU, Abu Dhabi, United Arab Emirates
Universidad Autonoma de Chiapas, Mexico
Palabras clave:Antennas; Large detector systems for particle and astroparticle physics; Antenna characteristics; Astroparticle physics; Comparative studies; Extensive air showers; Pierre Auger observatory; Transient response characteristics; Ultra high-energy cosmic rays; Vector effective length; Augers; Buildings; Cosmic rays; Detectors; Impulse response; Observatories; Signal detection; Antennas
Año:2012
Volumen:7
Número:10
DOI: http://dx.doi.org/10.1088/1748-0221/7/10/P10011
Título revista:Journal of Instrumentation
Título revista abreviado:J. Instrum.
ISSN:17480221
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17480221_v7_n10_p_Multitudinario

Referencias:

  • Abraham, J., Properties and performance of the prototype instrument for the Pierre Auger Observatory (2004) Nucl. Instrum. Meth. A, 523, p. 50. , Pierre Auger collaboration 10.1016/j.nima.2003.12.012 0168-9002
  • Abraham, J., The fluorescence detector of the Pierre Auger Observatory (2010) Nucl. Instrum. Meth. A, 620, p. 227. , Pierre Auger collaboration 10.1016/j.nima.2010.04.023 0168-9002
  • Abraham, J., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory (2010) Phys. Lett. B, 685, p. 239. , Pierre Auger collaboration 10.1016/j.physletb.2010.02.013 0370-2693
  • Abraham, J., Measurement of the depth of maximum of extensive air showers above 1018 eV (2010) Phys. Rev. Lett., 104, p. 091101. , Pierre Auger collaboration 10.1103/PhysRevLett.104.091101
  • Kelley, J., AERA: The Auger Engineering Radio Array (2012) J. Phys. Conf. Ser., 375 (5), p. 052006. , Pierre Auger collaboration 10.1088/1742-6596/375/1/052006 1742-6596 052006
  • Autonomous detection and analysis of radio emission from air showers at the Pierre Auger Observatory (2012) J. Phys. Conf. Ser., 375 (5), p. 052006. , Pierre Auger collaboration Revenu B. 10.1088/1742-6596/375/1/052006 1742-6596 052006
  • Allison, P., Microwave detection of cosmic ray showers at the Pierre Auger Observatory (2012) J. Phys. Conf. Ser., 375 (5), p. 052006. , Pierre Auger collaboration 10.1088/1742-6596/375/1/052006 1742-6596 052006
  • Jelley, J.V., Radio pulses from extensive cosmic-ray air showers (1965) Nature, 205, p. 327. , 10.1038/205327a0 0028-0836
  • Allan, H., Clay, R., Jones, J., Frequency spectrum of air shower radio pulses (1970) Nature, 225, p. 253. , 10.1038/225253a0 0028-0836
  • Fegan, D.J., O'Neill, P.P., Lateral distribution of UHF radio emission associated with cosmic ray showers (1973) Nature Phys., 241, p. 126
  • Ardouin, D., Radio-detection signature of high-energy cosmic rays by the CODALEMA experiment (2005) Nucl. Instrum. Meth. A, 555, p. 148. , 10.1016/j.nima.2005.08.096 0168-9002
  • Collaboration, L., Falcke, H., Detection and imaging of atmospheric radio flashes from cosmic ray air showers (2005) Nature, 435, p. 313. , 10.1038/nature03614
  • Falcke, H., Gorham, P., Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope (2003) Astropart. Phys., 19, p. 477. , 10.1016/S0927-6505(02)00245-1 0927-6505
  • Huege, T., Falcke, H., Radio emission from cosmic ray air showers: Coherent geosynchrotron radiation (2003) Astron. Astrophys., 412, p. 19. , 10.1051/0004-6361:20031422 0004-6361
  • Fliescher, S., Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory (2012) Nucl. Instrum. Meth. A, 662, p. 124. , Pierre Auger collaboration 10.1016/j.nima.2010.11.045 0168-9002
  • Ruehle, C., Advanced digital self-triggering of radio emission of cosmic rays (2012) Nucl. Instrum. Meth. A, 662, p. 146. , Pierre Auger collaboration 10.1016/j.nima.2010.11.017 0168-9002
  • Gemmeke, H., Advanced detection methods of radio signals from cosmic rays for KASCADE Grande and Auger (2006) Int. J. Mod. Phys. A, 21, p. 242. , 10.1142/S0217751X06033702 0217-751X
  • Stephan, M., (2010) Antennas, Filters and Preamplifiers Designed for the Radio Detection of Ultra-high-energy Cosmic Rays, , Pierre Auger collaboration
  • Seeger, O., Logarithmic periodic dipole antennas for the Auger Engineering Radio Array (2012) Nucl. Instrum. Meth. A, 662, p. 138. , Pierre Auger collaboration 10.1016/j.nima.2010.10.140 0168-9002
  • Beverage, H.H., (1941) Antenna
  • Antokhonov, B., TUNKA-133: A new array for the study of ultra-high energy cosmic rays (2011) Bull. Russ. Acad. Sci. Phys., 75, p. 367. , 10.3103/S1062873811030075 1062-8738
  • Collaboration, L., Gemmeke, H., (2009) New Antenna for Radio Detection of UHECR
  • Collaboration, C., Charrier, D., (2007) Design of A Low Noise, Wide Band, Active Dipole Antenna for A Cosmic Ray Radiodetection Experiment, , 10.1109/APS.2007.4396539
  • Collaboration, C., Ravel, O., The CODALEMA experiment (2012) Nucl. Instrum. Meth. A, 662, p. 89. , 10.1016/j.nima.2010.12.057 0168-9002
  • Auger, P., Collaborations, C., Revenu, B., Radio detection of cosmic ray air showers by the RAuger experiment, a fully autonomous and self-triggered system installed at the Pierre Auger Observatory (2012) Nucl. Instrum. Meth. A, 662, p. 130. , 10.1016/j.nima.2010.11.087 0168-9002
  • Collaboration, C., Charrier, D., Antenna development for astroparticle and radioastronomy experiments (2012) Nucl. Instrum. Meth. A, 662, p. 142. , 10.1016/j.nima.2010.10.141 0168-9002
  • Anderson, C.R., (2005) An Introduction to Ultra Wideband Communication Systems
  • Thumm, M., (1997) Hochfrequenzmesstechnik: Verfahren und Messsysteme
  • Burke, G., Poggio, A., (1977) Numerical Electromagnetics Code (NEC) Method of Moments, Part i
  • Burke, G., Poggio, A., (1981) Numerical Electromagnetics Code (NEC) Method of Moments, Part II
  • Jones, R.C., A new calculus for the treatment of optical systems (1941) J. Opt. Soc. Am., 31, p. 488. , 10.1364/JOSA.31.000488 0030-3941
  • Hamaker, J.P., Understanding radio polarimetry. I. Mathematical foundations (1996) Astron. Astrophys. Suppl., 117, p. 137. , 10.1051/aas:1996146 0365-0138
  • Sörgel, W., Wiesbeck, W., Influence of the antennas on the ultra-wideband transmission (2005) EURASIP J. App. Sign. Proc., 3, p. 296. , 10.1155/ASP.2005.296
  • Davis, W.A., Agarwal, K., (2001) Radio Frequency Circuit Design, , 10.1002/0471200689
  • Carlin, H., The scattering matrix in network theory (1956) IRE Trans. Circuit Theor., 3, p. 88. , 10.1109/TCT.1956.1086297
  • Seeger, O., (2010) Absolute Calibration of the Small Black Spider Antenna for the Pierre Auger Observatory
  • Krömer, O., (2008) Empfangssystem Zur Radioobservation Hochenergetischer Kosmischer Schauer und Sein Verhalten Bei Selbsttriggerung
  • Nehls, S., Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers (2008) Nucl. Instrum. Meth. A, 589, p. 350. , 10.1016/j.nima.2008.02.092 0168-9002
  • Balanis, C.A., (2005) Antenna Theory: Analysis and Design
  • Kraus, J.D., Marhefka, R.J., (2003) Antennas
  • Mess-Elektronik, S., (2007) BBAL 9136 Biconical Antenna with VHHBB 9124 Balun
  • Rohde, Schwarz, (2009) FSH4 (Model 24) Handheld Spectrum Analyzer 100 KHz to $3.6$ GHz with Preamplifier, Tracking Generator and Internal VSWR Bridge
  • (1992) ITU-R P.527-3 Electrical Characteristics of the Surface of the Earth, , ITU Recommendation P.527-3
  • Ludwig, M., Huege, T., REAS3: Monte Carlo simulations of radio emission from cosmic ray air showers using an 'end-point' formalism (2011) Astropart. Phys., 34, p. 438. , 10.1016/j.astropartphys.2010.10.012 0927-6505
  • Scholten, O., Werner, K., Rusydi, F., A macroscopic description of coherent geo-magnetic radiation from cosmic ray air showers (2008) Astropart. Phys., 29, p. 94. , 10.1016/j.astropartphys.2007.11.012 0927-6505
  • Licul, S., (2004) Ultra-wideband Antenna Characterization and Modeling
  • Bridle, A.H., The spectrum of the radio background between 13 and 404 MHz (1967) Mon. Not. Roy. Astron. Soc., 136, p. 219. , 0035-8711
  • Lawson, K.D., Variations in the spectral index of the galactic radio continuum emission in the northern hemisphere (1987) Mon. Not. Roy. Astron. Soc., 225, p. 307. , 0035-8711
  • Coppens, J., Observation of radio signals from air showers at the Pierre Auger Observatory (2009) Nucl. Instrum. Meth. A, 604, p. 41. , Pierre Auger collaboration 10.1016/j.nima.2009.03.119 0168-9002
  • Polisensky, E., LFmap: A low frequency sky map generating program (2007) Long Wavelength Array (LWA) Memo Ser., 111
  • Cane, H.V., Spectra of the non-thermal radio radiation from the galactic polar regions (1979) Mon. Not. Roy. Astron. Soc., 189, p. 465. , 0035-8711
  • De Oliveira-Costa, A., A model of diffuse galactic radio emission from 10 MHz to 100 GHz (2008) Mon. Not. Roy. Astron. Soc., 388, p. 247. , 10.1111/j.1365-2966.2008.13376.x 0035-8711
  • Kraus, J.D., (1966) Radio Astronomy
  • (1993) IEEE Standard Definitions of Terms for Antennas
  • Collaboration, L., Nigl, A., Direction identification in radio images of cosmic-ray air showers detected with LOPES and KASCADE (2008) Astron. Astrophys., 487, p. 781. , 10.1051/0004-6361:20079218 0004-6361
  • Fliescher, S., (2011) Antenna Devices and Measurement of Radio Emission from Cosmic Ray Induced Air Showers at the Pierre Auger Observatory
  • Abreu, P., Advanced functionality for radio analysis in the offline software framework of the Pierre Auger Observatory (2011) Nucl. Instrum. Meth. A, 635, p. 92. , Pierre Auger collaboration 10.1016/j.nima.2011.01.049 0168-9002
  • Brinson, M.E., Jahn, S., Qucs: A GPL software package for circuit simulation, compact device modelling and circuit macromodelling from DC to RF and beyond (2009) Int. J. Numer. Model., 22, p. 297. , 10.1002/jnm.702

Citas:

---------- APA ----------
(2012) . Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory. Journal of Instrumentation, 7(10).
http://dx.doi.org/10.1088/1748-0221/7/10/P10011
---------- CHICAGO ----------
Multitudinario:515. "Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory" . Journal of Instrumentation 7, no. 10 (2012).
http://dx.doi.org/10.1088/1748-0221/7/10/P10011
---------- MLA ----------
Multitudinario:515. "Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory" . Journal of Instrumentation, vol. 7, no. 10, 2012.
http://dx.doi.org/10.1088/1748-0221/7/10/P10011
---------- VANCOUVER ----------
Multitudinario:515. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory. J. Instrum. 2012;7(10).
http://dx.doi.org/10.1088/1748-0221/7/10/P10011