Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chemoreception is an essential process for the survival and reproduction of animals. Many of the proteins responsible for recognizing and transmitting chemical stimuli in insects are encoded by genes that are members of moderately sized multigene families. The members of the CheB family are specialized in gustatory-mediated detection of long-chain hydrocarbon pheromones in Drosophila melanogaster and play a central role in triggering and modulating mating behavior in this species. Here, we present a comprehensive comparative genomic analysis of the CheB family across 12 species of the Drosophila genus. We have identified a total of 102 new CheB genes in the genomes of these species, including a functionally divergent member previously uncharacterized in D. melanogaster. We found that, despite its relatively small repertory size, the CheB family has undergone multiple gain and loss events and various episodes of diversifying selection during the divergence of the surveyed species. Present estimates of gene turnover and coding sequence substitution rates show that this family is evolving faster than any known Drosophila chemosensory family. To date, only other insect gustatory-related genes among these families had shown evolutionary dynamics close to those observed in CheBs. Our findings reveal the high adaptive potential of molecular components of the gustatory system in insects and anticipate a key role of genes involved in this sensory modality in species adaptation and diversification. © The Author 2016.

Registro:

Documento: Artículo
Título:Comparative genomics uncovers unique gene turnover and evolutionary rates in a gene family involved in the detection of insect cuticular pheromones
Autor:Torres-Oliva, M.; Almeida, F.C.; Sánchez-Gracia, A.; Rozas, J.
Filiación:Departament de Genètica, Microbiologia i EstadÚstica, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
Georg-August-University Göttingen, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Department of Developmental Biology, Ernst-Caspari-House (GZMB), Justus-von-Liebig-Weg 11, Göttingen, Germany
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET-IEGEBA), Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Ciudad Universitaria, Av. Intendente Güiraldes y Costanera Norte s/n, Pabellón II, Capital Federal, Argentina
Palabras clave:Birth; CheB gene family; Chemosensory proteins; Death evolution; Functional divergence; Positive selection
Año:2016
Volumen:8
Número:6
Página de inicio:1734
Página de fin:1747
DOI: http://dx.doi.org/10.1093/gbe/evw108
Título revista:Genome Biology and Evolution
Título revista abreviado:Genome Biolog. Evol.
ISSN:17596653
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17596653_v8_n6_p1734_TorresOliva

Referencias:

  • Almeida, F.C., Sánchez-Gracia, A., Campos, J.L., Rozas, J., Family size evolution in drosophila chemosensory gene families: A comparative analysis with a critical appraisal of methods (2014) Genome Biol Evol, 6, pp. 1669-1682
  • Arrese, E.L., Soulages, J.L., Insect fat body: Energy, metabolism, and regulation (2010) Annu Rev Entomol, 55, pp. 207-225
  • Begg, M., Hogben, L., Chemoreceptivity of drosophila melanogaster (1946) Proc R Soc London Ser B: Biol Sci, 133, pp. 1-19
  • Bendtsen, J.D., Nielsen, H., Von Heijne, G., Brunak, S., Improved prediction of signal peptides: SignalP 3.0 (2004) J Mol Biol, 340, pp. 783-795
  • Bielawski, J.P., Yang, Z., Maximum likelihood methods for detecting adaptive evolution after gene duplication (2003) J Struct Funct Genomics, 3, pp. 201-212
  • Bontonou, G., Wicker-Thomas, C., Sexual communication in the drosophila genus (2014) Insects, 5, pp. 439-458
  • Buchan, D.W.A., Minneci, F., Nugent, T.C.O., Bryson, K., Jones, D.T., Scalable web services for the PSIPRED protein analysis workbench (2013) Nucleic Acids Res, 41, pp. W349-W357
  • Carey, A.F., Carlson, J.R., Insect olfaction from model systems to disease control (2011) Proc Natl Acad Sci U S A, 108, pp. 12987-12995
  • Clark, A.G., Evolution of genes and genomes on the drosophila phylogeny (2007) Nature, 450, pp. 203-218
  • Duan, J., SilkDB v2.0: A platform for silkworm (Bombyx mori) genome biology (2010) Nucleic Acids Res, 38, pp. D453-D456
  • Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G., (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, , Cambridge (United Kingdom): Cambridge University Press
  • Engsontia, P., Sangket, U., Chotigeat, W., Satasook, C., Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: Implications for their adaptation and speciation (2014) J Mol Evol, 79, pp. 21-39
  • Gardiner, A., Barker, D., Butlin, R.K., Jordan, W.C., Ritchie, M.G., Drosophila chemoreceptor gene evolution: Selection, specialization and genome size (2008) Mol Ecol, 17, pp. 1648-1657
  • Giraldo-Calderón, G.I., VectorBase: An updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases (2014) Nucleic Acids Res, 43, pp. D707-D713. , Database
  • Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G., Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences (1979) Syst Biol, 28, pp. 132-163
  • Gu, X., An update of DIVERGE software for functional divergence analysis of protein family (2013) Mol Biol Evol, 30, pp. 1713-1719
  • Guex, N., Peitsch, M.C., SWISS-MODEL and the swiss-pdbviewer: An environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723
  • Le Guilloux, V., Schmidtke, P., Tuffery, P., Fpocket: An open source platform for ligand pocket detection (2009) BMC Bioinformatics, 10, p. 168
  • Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: A novel method for rapid multiple sequence alignment based on fast fourier transform (2002) Nucleic Acids Res, 30, pp. 3059-3066
  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J.E., The Phyre2 web portal for protein modeling, prediction and analysis (2015) Nat Protoc, 10, pp. 845-858
  • Kim, H.S., BeetleBase in 2010: Revisions to provide comprehensive genomic information for tribolium castaneum (2010) Nucleic Acids Res, 38, pp. D437-D442
  • Kirkness, E.F., Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle (2010) Proc Natl Acad Sci U S A, 107, pp. 12168-12173
  • Kulmuni, J., Wurm, Y., Pamilo, P., Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates (2013) Heredity (Edinb), 110, pp. 538-547
  • Legeai, F., AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome (2010) Insect Mol Biol, 19, pp. 5-12
  • Murrell, B., Detecting individual sites subject to episodic diversifying selection (2012) PLoS Genet, 8, p. e1002764
  • Ozaki, M., Ant nestmate and non-nestmate discrimination by a chemosensory sensillum (2005) Science, 309, pp. 311-314
  • Park, S.K., A drosophila protein specific to pheromone-sensing gustatory hairs delays males’ copulation attempts (2006) Curr Biol, 16, pp. 1154-1159
  • Pei, J., Kim, B.-H., Grishin, N.V., PROMALS3D: A tool for multiple protein sequence and structure alignments (2008) Nucleic Acids Res, 36, pp. 2295-2300
  • Pelosi, P., Iovinella, I., Felicioli, A., Dani, F.R., Soluble proteins of chemical communication: An overview across arthropods (2014) Front Physiol, 5, p. 320
  • Pelosi, P., Zhou, J.-J., Ban, L.P., Calvello, M., Soluble proteins in insect chemical communication (2006) Cell Mol Life Sci, 63, pp. 1658-1676
  • Pertea, M., Lin, X., Salzberg, S.L., GeneSplicer: A new computational method for splice site prediction (2001) Nucleic Acids Res, 29, pp. 1185-1190
  • Pikielny, C.W., Drosophila CheB proteins involved in gustatory detection of pheromones are related to a human neurodegeneration factor (2010) Vitam Horm, 83, pp. 273-287
  • Pond, S.L.K., Frost, S.D.W., Muse, S.V., HyPhy: Hypothesis testing using phylogenies (2005) Bioinformatics, 21, pp. 676-679
  • Robertson, H.M., Chemical stimuli eliciting courtship by males in drosophila melanogaster (1983) Experientia, 39, pp. 333-335
  • Robinson, S.W., Herzyk, P., Dow, J.A.T., Leader, D.P., FlyAtlas: Database of gene expression in the tissues of drosophila melanogaster (2013) Nucleic Acids Res, 41, pp. D744-D750
  • Rutherford, K., Artemis: Sequence visualization and annotation (2000) Bioinformatics, 16, pp. 944-945
  • Sánchez-Gracia, A., Vieira, F.G., Almeida, F.C., Rozas, J., Comparative genomics of the major chemosensory gene families in arthropods (2011) Encycl. Life Sci.
  • Sánchez-Gracia, A., Vieira, F.G., Rozas, J., Molecular evolution of the major chemosensory gene families in insects (2009) Heredity (Edinb), 103, pp. 208-216
  • Dos Santos, G., FlyBase: Introduction of the drosophila melanogaster release 6 reference genome assembly and large-scale migration of genome annotations (2014) Nucleic Acids Res
  • Sawyer, S., Statistical tests for detecting gene conversion (1989) Mol Biol Evol, 6, pp. 526-538
  • Shanbhag, S.R., Park, S.K., Pikielny, C.W., Steinbrecht, R.A., Gustatory organs of drosophila melanogaster: Fine structure and expression of the putative odorant-binding protein PBPRP2 (2001) Cell Tissue Res, 304, pp. 423-437
  • Sillitoe, I., CATH: Comprehensive structural and functional annotations for genome sequences (2015) Nucleic Acids Res, 43, pp. D376-D381
  • Stajich, J.E., The bioperl toolkit: Perl modules for the life sciences (2002) Genome Res, 12, pp. 1611-1618
  • Stamatakis, A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22, pp. 2688-2690
  • Starostina, E., Xu, A., Lin, H., Pikielny, C.W., A drosophila protein family implicated in pheromone perception is related to tay-sachs GM2-ac-tivator protein (2009) J Biol Chem, 284, pp. 585-594
  • Steinbrecht, R.A., Structure and function of insect olfactory sensilla (1996) Ciba Found Symp, 200, pp. 158-174. , discussion 174–177
  • Touhara, K., Vosshall, L.B., Sensing odorants and pheromones with chemosensory receptors (2009) Annu Rev Physiol, 71, pp. 307-332
  • Vieira, F.G., Rozas, J., Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: Origin and evolutionary history of the chemosensory system (2011) Genome Biol Evol, 3, pp. 476-490
  • Vieira, F.G., Sánchez-Gracia, A., Rozas, J., Comparative genomic analysis of the odorant-binding protein family in 12 drosophila genomes: Purifying selection and birth-and-death evolution (2007) Genome Biol, 8, p. R235
  • Weinstock, G.M., Insights into social insects from the genome of the honeybee apis mellifera (2006) Nature, 443, pp. 931-949
  • Werren, J.H., Functional and evolutionary insights from the genomes of three parasitoid nasonia species (2010) Science, 327, pp. 343-348
  • Wright, C.S., Mi, L.-Z., Lee, S., Rastinejad, F., Crystal structure analysis of phosphatidylcholine-GM2-activator product complexes: Evidence for hydrolase activity (2005) Biochemistry, 44, pp. 13510-13521
  • Xu, A., Novel genes expressed in subsets of chemosensory sensilla on the front legs of male drosophila melanogaster (2002) Cell Tissue Res, 307, pp. 381-392
  • Yang, B., Statistical methods for detecting molecular adaptation (2000) Trends Ecol Evol, 15, pp. 496-503
  • Yang, Z., Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution (1998) Mol Biol Evol, 15, pp. 568-573
  • Yang, Z., PAML 4: Phylogenetic analysis by maximum likelihood (2007) Mol Biol Evol, 24, pp. 1586-1591
  • Zdobnov, E.M., Apweiler, R., InterProScan – An integration platform for the signature-recognition methods in InterPro (2001) Bioinformatics, 17, pp. 847-848

Citas:

---------- APA ----------
Torres-Oliva, M., Almeida, F.C., Sánchez-Gracia, A. & Rozas, J. (2016) . Comparative genomics uncovers unique gene turnover and evolutionary rates in a gene family involved in the detection of insect cuticular pheromones. Genome Biology and Evolution, 8(6), 1734-1747.
http://dx.doi.org/10.1093/gbe/evw108
---------- CHICAGO ----------
Torres-Oliva, M., Almeida, F.C., Sánchez-Gracia, A., Rozas, J. "Comparative genomics uncovers unique gene turnover and evolutionary rates in a gene family involved in the detection of insect cuticular pheromones" . Genome Biology and Evolution 8, no. 6 (2016) : 1734-1747.
http://dx.doi.org/10.1093/gbe/evw108
---------- MLA ----------
Torres-Oliva, M., Almeida, F.C., Sánchez-Gracia, A., Rozas, J. "Comparative genomics uncovers unique gene turnover and evolutionary rates in a gene family involved in the detection of insect cuticular pheromones" . Genome Biology and Evolution, vol. 8, no. 6, 2016, pp. 1734-1747.
http://dx.doi.org/10.1093/gbe/evw108
---------- VANCOUVER ----------
Torres-Oliva, M., Almeida, F.C., Sánchez-Gracia, A., Rozas, J. Comparative genomics uncovers unique gene turnover and evolutionary rates in a gene family involved in the detection of insect cuticular pheromones. Genome Biolog. Evol. 2016;8(6):1734-1747.
http://dx.doi.org/10.1093/gbe/evw108