Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The use of human neuroimaging technology provides knowledge about several emotional and cognitive processes at the neural level of organization. In particular, electroencephalographic (EEG) techniques allow researchers to explore high-temporal resolution of the neural activity that underlie the dynamics of cognitive processes. Although EEG research has been mostly applied in laboratory settings, recently a low-cost, portable EEG apparatus was released, which allows exploration of different emotional and cognitive processes during every-day activities. We compared a wide range of EEG measures using both a low-cost portable and a high-quality laboratory system. EEG recordings were done with both systems while participants performed an active task (Go/NoGo) and during their resting-state. Results showed similar waveforms in terms of morphology and amplitude of the ERPs, and comparable effects between conditions of the applied Go/NoGo paradigm. In addition, the contribution of each frequency to the entire EEG was not significantly different during resting-state, and fluctuations in amplitude of oscillations showed long-range temporal correlations. These results showed that low-cost, portable EEG technology can provide an alternative of enough quality for measuring brain activity outside a laboratory setting, which could contribute to the study of different populations in more ecological contexts. © 2018 Pietto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Electrophysiological approaches in the study of cognitive development outside the lab
Autor:Pietto, M.L.; Gatti, M.; Raimondo, F.; Lipina, S.J.; Kamienkowski, J.E.
Filiación:Unidad de Neurobiología Aplicada (UNA, CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
Laboratorio de Inteligencia Artificial Aplicada (Instituto de Ciencias de la Computación, FCEyN-UBA, CONICET), Ciudad Autónoma de Buenos Aires, Argentina
Departamento de Computación (FCEyN-UBA, CONICET), Ciudad Autónoma de Buenos Aires, Argentina
Institut du Cerveau et de la Moelle épinière, Paris, France
Sorbonne Universités, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
Coma Science Group, University and University Hospital of Liège, Liège, Belgium
Departamento de Física (FCEyN-UBA, CONICET), Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:adult; article; brain function; cognitive development; controlled study; evoked response; female; human; human experiment; male; morphology; oscillation; rest; waveform
Año:2018
Volumen:13
Número:11
DOI: http://dx.doi.org/10.1371/journal.pone.0206983
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v13_n11_p_Pietto

Referencias:

  • Cohen, M.X., (2014) Analyzing Neural Time Series Data: Theory and Practice, , MIT Press, London
  • Aspinall, P., Panagiotis, M., Coyne, R., Roe, J., The urban brain: Analysing outdoor physical activity (2015) British Journal of Sports Medicine, 49, pp. 272-276. , https://doi.org/10.1136/bjsports-2012-091877, PMID: 23467965
  • Mavros, P., Zaltz Austwick, M., Hudson Smith, A., Geo-EEG: Towards the use of EEG in the study of urban behaviour (2016) Applied Spatial Analysis, 9, pp. 191-212. , https://doi.org/10.1007/s12061-015-9181-z
  • Toppi, J., Borghini, G., Petti, M., He, E.J., De Giusti, V., He, B., Investigating cooperative behavior in ecological settings: An EEG hyperscanning study (2016) PLoS ONE, 11. , https://doi.org/10.1371/journal.pone.0154236, PMID: 27124558
  • Kuziek, J.W.P., Shienh, A., Mathewson, K.E., Transitioning EEG experiments away from the laboratory using a Raspberry Pi2 (2017) J Neurosci Methods, 277, pp. 75-82. , https://doi.org/10.1016/j.jneumeth.2016.11.013, PMID: 27894782
  • St. John, A.M., Kao, K., Liederman, J., Grieve, P.G., Tarullo, A.R., Maternal cortisol slope at 6 months predicts infant cortisol slope and EEG power at 12 months (2017) Dev Psychobiol, 59, pp. 787-801. , https://doi.org/10.1002/dev.21540, PMID: 28686284
  • Wilson, B.A., Ecological validity of neuropsychological assessment: Do neuropsychological indexes predict performance in everyday activities? (1993) Appl Prev Psychol, 2, pp. 209-215. , https://doi.org/10.1016/S0962-1849(05)80091-5
  • Bowers, E.P., Von Eye, A., Lerner, J.V., Arbeit, M.R., Weiner, M.B., Chase, P., The role of ecological assets in positive and problematic developmental trajectories (2011) J Adolesc, 34, pp. 1151-1165. , https://doi.org/10.1016/j.adolescence.2011.07.007, PMID: 22118508
  • Okahashi, S., Seki, K., Nagano, A., Luo, Z., Kojima, M., Futaki, T., A virtual shopping test for realistic assessment of cognitive function (2013) J Neuroeng Rehabil, 10, p. 59. , https://doi.org/10.1186/1743-0003-10-59PMID, 23777412
  • Price, R.B., Allen, K.B., Silk, J.S., Ladouceur, C.D., Ryan, N.D., Dahl, R.E., Vigilance in the laboratory predicts avoidance in the real world: A dimensional analysis of neural, behavioral, and ecological momentary data in anxious youth (2016) Dev Cogn Neurosci, 19, pp. 128-136. , https://doi.org/10.1016/j.dcn.2016.03.001, PMID: 27010577
  • Mota, N.B., Weissheimer, J., Madruga, B., Adamy, N., Bunge, S.A., Copelli, M., A naturalistic assessment of the organization of children’s memories predicts cognitive functioning and reading ability (2016) Mind, Brain, Educ, 10, pp. 184-195. , https://doi.org/10.1111/mbe.12122
  • Robertson, K., Schmitter-Edgecombe, M., Naturalistic tasks performed in realistic environments: A review with implications for neuropsychological assessment (2017) Clin Neuropsychol, 31, pp. 16-42. , https://doi.org/10.1080/13854046.2016.1208847, PMID: 27406700
  • Badcock, N., Mousikou, P., Mahajan, Y., De Lissa, P., Thie, J., McArthur, G., Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs (2013) PeerJ, 1, p. e38. , https://doi.org/10.7717/peerj.38, PMID: 23638374
  • Badcock, N.A., Preece, K.A., De Wit, B., Glenn, K., Fieder, N., Thie, J., Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children (2015) PeerJ, 3. , https://doi.org/10.7717/peerj.907, PMID: 25922794
  • Ries, A.J., Touryan, J., Vettel, J., McDowell, K., Hairston, W.D., A comparison of electroencephalography signals acquired from conventional and mobile systems (2014) J Neurosci Neuroengineering, 3, pp. 10-20. , https://doi.org/10.1166/jnsne.2014.1092
  • Stopczynski, A., Stahlhut, C., Larsen, J.E., Petersen, M.K., Hansen, L.K., The smartphone brain scanner: A portable real-time neuroimaging system (2014) PLoS ONE, 9. , https://doi.org/10.1371/journal.pone.0086733, PMID: 24505263
  • Stopczynski, A., Stahlhut, C., Petersen, M.K., Larsen, J.E., Jensen, C.F., Ivanova, M.G., Smartphones as pocketable labs: Visions for mobile brain imaging and neurofeedback (2014) Int J Psychophysiol, 91, pp. 54-66. , https://doi.org/10.1016/j.ijpsycho.2013.08.007, PMID: 23994206
  • Ekanayake, H., P300 and Emotiv EPOC: Does Emotiv EPOC capture real EEG? Visaduma, , http://neurofeedback.visaduma.info/emotivresearch.htm, December 2010. In: Internet
  • Debener, S., Minow, F., Emkes, R., Gandras, K., Vos, M., How about taking a low-cost, small, and wireless EEG for a walk? (2012) Psychophysiology, 49, pp. 1617-1621. , https://doi.org/10.1111/j.1469-8986.2012.01471.x, PMID: 23013047
  • Boutani, H., Ohsuga, M., Applicability of the “Emotiv EEG Neuroheadset” as a user-friendly input interface (2013) Conf Proc. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf., pp. 1346-1349. , https://doi.org/10.1109/EMBC.2013.6609758
  • Mayaud, L., Congedo, M., Van Laghenhove, A., Orlikowski, D., Figère, M., Azabou, E., A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm (2013) Neurophysiol Clin, 43, pp. 217-227. , https://doi.org/10.1016/j.neucli.2013.06.002, PMID: 24094907
  • Näpflin, M., Wildi, M., Sarnthein, J., Test-retest reliability of resting EEG spectra validates a statistical signature of persons (2017) Clin Neurophysiol, 118, pp. 2519-2524. , https://doi.org/10.1016/j.clinph.2007.07.022PMID, 17892969
  • Pietto, M.L., Kamienkowski, J.E., Lipina, S.J., Electrophysiological approaches in the study of the influence of childhood poverty on cognition (2017) Neuroscience and Social Science, pp. 349-381. , Ibáñez A, Sedeño L, García AM, editors. Springer International Publishing, Cham
  • Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L., Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series (1995) Chaos An Interdiscip J Nonlinear Sci, 5, pp. 82-87. , https://doi.org/10.1063/1.166141, PMID: 11538314
  • Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J., Long-range temporal correlations and scaling behavior in human brain oscillations (2001) J Neurosci, 21, pp. 1370-1377. , https://doi.org/10.1002/anie.201106423, PMID: 11160408
  • Peirce, J.W., PsychoPy—Psychophysics software in Python (2007) J Neurosci Methods, 162, pp. 8-13. , https://doi.org/10.1016/j.jneumeth.2006.11.017, PMID: 17254636
  • Van, R.G., Drake, F.L., (2010) The Python Library Reference, pp. 1-1144. , October
  • Johnstone, S.J., Pleffer, C.B., Barry, R.J., Clarke, A.R., Smith, J.L., Development of inhibitory processing during the Go/Nogo task: A behavioral and event-related potential study of children and adults (2005) J Psychophysiol, 19, pp. 11-23. , https://doi.org/10.1027/0269-8803.19.1.11
  • Petersen, S.E., Posner, M.I., The attention system of the human brain: 20 years after (2012) Annu Rev Neurosci, 35, pp. 73-89. , https://doi.org/10.1146/annurev-neuro-062111-150525, PMID: 22524787
  • Delorme, A., Makeig, S., EEGLAb: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis (2004) J Neurosci Methods, 134, pp. 9-21. , https://doi.org/10.1016/j.jneumeth.2003.10.009, PMID: 15102499
  • Pietto, M., Parra, M.A., Trujillo, N., Flores, F., García, A.M., Bustin, J., Behavioral and electrophysiological correlates of memory binding deficits in patients at different risk levels for Alzheimer’s disease (2016) J Alzheimer’S Dis, 53, pp. 1325-1340. , https://doi.org/10.3233/JAD-160056, PMID: 27372640
  • Jodo, E., Kayama, Y., Relation of a negative ERP component to response inhibition in a Go/No-go task (1992) Electroencephalogr Clin Neurophysiol, 82, pp. 477-482. , https://doi.org/10.1016/0013-4694(92)90054-L, PMID: 1375556
  • Best, J.R., Miller, P.H., A developmental perspective on executive function (2010) Child Dev, 81, pp. 1641-1660. , https://doi.org/10.1111/j.1467-8624.2010.01499.x, PMID: 21077853
  • Quian Quiroga, R., Obtaining single stimulus evoked potentials with wavelet denoising (2000) Phys D Nonlinear Phenom, 145, pp. 278-292. , https://doi.org/10.1016/S0167-2789(00)00116-0
  • Ahmadi, M., Quian Quiroga, R., Automatic denoising of single-trial evoked potentials (2013) Neuroimage, 66, pp. 672-680. , https://doi.org/10.1016/j.neuroimage.2012.10.062, PMID: 23142653
  • Navajas, J., Ahmadi, M., Quian Quiroga, R., Uncovering the mechanisms of conscious face perception: A single-trial study of the n170 responses (2013) J Neurosci, 33, pp. 1337-1343. , https://doi.org/10.1523/JNEUROSCI.1226-12.2013, PMID: 23345210
  • Munro, P., Toivonen, H., Webb, G.I., Buntine, W., Orbanz, P., Teh, Y.W., Baum-Welch algorithm (2011) Encyclopedia of Machine Learning, p. 74. , Sam-mut C, Webb GI, editors. Springer US, Boston, MA
  • Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis (1999) Brain Res Rev, 29, pp. 169-195. , http://dx.doi.org/10.1016/S0165-0173(98)00056-3, PMID: 10209231
  • Klimesch, W., Α-band oscillations, attention, and controlled access to stored information (2012) Trends Cogn Sci, 16, pp. 606-617. , https://doi.org/10.1016/j.tics.2012.10.007, PMID: 23141428
  • Foster, J.J., Sutterer, D.W., Serences, J.T., Vogel, E.K., Awh, E., The topography of alpha-band activity tracks the content of spatial working memory (2016) J Neurophysiol, 115, pp. 168-177. , https://doi.org/10.1152/jn.00860.2015, PMID: 26467522
  • Mayer, A., Schwiedrzik, C.M., Wibral, M., Singer, W., Melloni, L., Expecting to see a letter: Alpha oscillations as carriers of top-down sensory predictions (2015) Cereb Cortex, 26, pp. 3146-3160. , https://doi.org/10.1093/cercor/bhv146, PMID: 26142463

Citas:

---------- APA ----------
Pietto, M.L., Gatti, M., Raimondo, F., Lipina, S.J. & Kamienkowski, J.E. (2018) . Electrophysiological approaches in the study of cognitive development outside the lab. PLoS ONE, 13(11).
http://dx.doi.org/10.1371/journal.pone.0206983
---------- CHICAGO ----------
Pietto, M.L., Gatti, M., Raimondo, F., Lipina, S.J., Kamienkowski, J.E. "Electrophysiological approaches in the study of cognitive development outside the lab" . PLoS ONE 13, no. 11 (2018).
http://dx.doi.org/10.1371/journal.pone.0206983
---------- MLA ----------
Pietto, M.L., Gatti, M., Raimondo, F., Lipina, S.J., Kamienkowski, J.E. "Electrophysiological approaches in the study of cognitive development outside the lab" . PLoS ONE, vol. 13, no. 11, 2018.
http://dx.doi.org/10.1371/journal.pone.0206983
---------- VANCOUVER ----------
Pietto, M.L., Gatti, M., Raimondo, F., Lipina, S.J., Kamienkowski, J.E. Electrophysiological approaches in the study of cognitive development outside the lab. PLoS ONE. 2018;13(11).
http://dx.doi.org/10.1371/journal.pone.0206983