Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In situ infrared subtractive normalized Fourier transform infrared spectroscopy (SNIFTIRS) experiments performed simultaneously with the electroreduction of oxygen on gold and platinum cathodes in LiPF6 dimethyl sulfoxide (DMSO) electrolyte have shown that the solvent is stable with respect to nucleophilic attack by the electrogenerated superoxide radical anion. However, long-term experiments with KO2 solutions in DMSO have shown a slow formation of dimethyl sulfone. Evidence of dimethyl sulfone formation by anodic oxidation of DMSO above 4.2 V (Li/Li+) in the presence of trace water has been obtained on gold. On platinum, this unwanted reaction in the charging cycle of a lithium-air battery takes place at lower potentials, i.e., 3.5 V. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery
Autor:Mozhzhukhina, N.; Méndez De Leo, L.P.; Calvo, E.J.
Filiación:INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, AR-1428 Buenos Aires, Argentina
Palabras clave:Dimethyl sulfoxide (DMSO); Electroreduction of oxygens; Lithium-air battery; Long-term experiments; Nucleophilic attack; Oxidation of DMSO; Platinum cathodes; Superoxide radical anions; Anodic oxidation; Charging (batteries); Dimethyl sulfoxide; Electrolytic reduction; Experiments; Fourier transform infrared spectroscopy; Gold; Lithium; Organic solvents; Oxygen; Platinum; Lithium batteries
Año:2013
Volumen:117
Número:36
Página de inicio:18375
Página de fin:18380
DOI: http://dx.doi.org/10.1021/jp407221c
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v117_n36_p18375_Mozhzhukhina

Referencias:

  • Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.M., Li-O2 and Li-S batteries with high energy storage (2012) Nat. Mater., 11, pp. 19-29
  • Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W., Lithium-Air Battery: Promise and Challenges (2010) J. Phys. Chem. Lett., 1, pp. 2193-2203
  • Abraham, K.M., Jiang, Z., (1996) J. Electrochem. Soc., 143, pp. 1-5
  • Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., A Critical Review of Li/Air Batteries (2012) J. Electrochem. Soc., 159, p. 1
  • Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Bruce, P.G., Challenges facing lithium batteries and electrical double-layer capacitors (2012) Angew. Chem., Int. Ed. Engl., 51, pp. 9994-10024
  • Peng, Z., Freunberger, S.A., Hardwick, L.J., Chen, Y., Giordani, V., Barde, F., Novak, P., Bruce, P.G., Oxygen reactions in a non-aqueous Li+ electrolyte (2011) Angew. Chem., Int. Ed. Engl., 50, pp. 6351-6355
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., (2009) J. Phys. Chem. C, 113, pp. 20127-20134
  • McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshoj, J.S., Norskov, J.K., Luntz, A.C., (2012) J. Phys. Chem. Lett., 3, pp. 997-1001
  • McCloskey, B.D., Scheffler, R., Speidel, A., Girishkumar, G., Luntz, A.C., On the Mechanism of Nonaqueous Li-O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li-Air Batteries (2012) J. Phys. Chem. C, 116, pp. 23897-23905
  • Freunberger, S.A., Chen, Y., Peng, Z., Griffin, J.M., Hardwick, L.J., Barde, F., Novak, P., Bruce, P.G., Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes (2011) J. Am. Chem. Soc., 133, pp. 8040-8047
  • Xu, D., Wang, Z.-L., Xu, J.-J., Zhang, L.-L., Zhang, X.-B., Novel DMSO-based electrolyte for high performance rechargeable Li-O 2 batteries (2012) Chem. Commun., 48, pp. 6948-6950
  • Wang, H., Xie, K., Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li-O2 batteries (2012) Electrochim. Acta, 64, pp. 29-34
  • McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C., Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry (2011) J. Phys. Chem. Lett., 2, pp. 1161-1166
  • Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Barde, F., Bruce, P.G., The lithium-oxygen battery with ether-based electrolytes (2011) Angew. Chem., Int. Ed., 50, pp. 8609-8613
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery (2010) J. Phys. Chem. C, 114, pp. 9178-9186
  • Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G., A reversible and higher-rate Li-O2 battery (2012) Science, 337, pp. 563-566
  • Trahan, M.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte (2013) J. Electrochem. Soc., 160, pp. 259-A267
  • Calvo, E.J., Mozhzhukhina, N., A Rotating Ring Disk Electrode Study of the Oxygen Reduction Reaction in Lithium Containing Non Aqueous Electrolyte (2013) Electrochem. Commun., 31, pp. 56-58
  • Goolsby, A.D., Sawyer, D.T., The Electrochemical Reduction of Superoxide Ion and Oxidation of Hydroxide Ion in Dimethyl Sulfoxide (1968) Anal. Chem., 40, pp. 83-86
  • Gampp, H., Lippard, S.J., Reinvestigation of 18-Crown-6 Ether/Potassium Superoxide Solutions in Me2SO (1983) Inorg. Chem., 22, pp. 357-358
  • Krtil, P., Kavan, L., Hoskovcova, I., Kratochvilova, K., Anodic oxidation of dimethyl sulfoxide based electrolyte solutions: An in situ FTIR study (1996) J. Appl. Electrochem., 26, pp. 523-527
  • Bellamy, L.J., (1954) The Infra-red Spectra of Complex Molecules, , Methuen & Co Ltd. London
  • Lin-Vein, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, , Academic Press, Inc. San Diego, CA
  • http://webbook.nist.gov/chemistry/, NIST Chemistry WebBook: NIST Standard Reference Database Number 69. National Institute of Standards and Technology

Citas:

---------- APA ----------
Mozhzhukhina, N., Méndez De Leo, L.P. & Calvo, E.J. (2013) . Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery. Journal of Physical Chemistry C, 117(36), 18375-18380.
http://dx.doi.org/10.1021/jp407221c
---------- CHICAGO ----------
Mozhzhukhina, N., Méndez De Leo, L.P., Calvo, E.J. "Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery" . Journal of Physical Chemistry C 117, no. 36 (2013) : 18375-18380.
http://dx.doi.org/10.1021/jp407221c
---------- MLA ----------
Mozhzhukhina, N., Méndez De Leo, L.P., Calvo, E.J. "Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery" . Journal of Physical Chemistry C, vol. 117, no. 36, 2013, pp. 18375-18380.
http://dx.doi.org/10.1021/jp407221c
---------- VANCOUVER ----------
Mozhzhukhina, N., Méndez De Leo, L.P., Calvo, E.J. Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery. J. Phys. Chem. C. 2013;117(36):18375-18380.
http://dx.doi.org/10.1021/jp407221c