Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A family of single-crystalline particles of M2Al(OH)6Cl·1.5H2O layered double hydroxides (LDH) with M(II) a transition-metal cation were obtained by a one-pot room-temperature homogeneous alkalinization driven by glycidol ring opening. In contrast with traditional homogeneous methods, LDH phases are obtained in the exchangeable chloride-containing form. The main precipitation steps were assessed by continuous measurement of pH profiles, field emission scanning electron microscopy, and powder X-ray diffraction, revealing the heterogeneous nucleation of LDH phase over previously formed nano-Al(OH)3 seeds. The precipitation pH plateau of each LDH follows the trend of the inherent solubility of the single M(II) phases obtained under alkalinization. A linear free-energy relation links the solubility of the bare M(II) hydroxides with the correspondent M(II)-Al(III) LDH, in good agreement with previously reported thermochemical models. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:One-pot epoxide-driven synthesis of M2Al(OH)6Cl·1.5H2O layered double hydroxides: Precipitation mechanism and relative stabilities
Autor:Oestreicher, V.; Fábregas, I.; Jobbágy, M.
Filiación:INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Division of Porous Materials, UNIDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli, Buenos Aires, B1603ALO, Argentina
Centro Interdisciplinario de Nanociencia y Nanotecnologiía, Argentina
Palabras clave:Chlorine compounds; Field emission microscopes; Free energy; Scanning electron microscopy; Solubility; Transition metals; X ray diffraction; Continuous measurements; Field emission scanning electron microscopy; Heterogeneous nucleation; Homogeneous alkalinization; Layered double hydroxides; Powder X ray diffraction; Precipitation mechanism; Thermochemical models; Aluminum
Año:2014
Volumen:118
Número:51
Página de inicio:30274
Página de fin:30281
DOI: http://dx.doi.org/10.1021/jp510341q
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v118_n51_p30274_Oestreicher

Referencias:

  • Liu, Z., Ma, R., Ebina, Y., Iyi, N., Takada, K., Sasaki, T., General Synthesis and Delamination of Highly Crystalline Transition-Metal-Bearing Layered Double Hydroxides (2007) Langmuir, 23, pp. 861-867
  • Iyi, N., Ebina, Y., Sasaki, T., Water-Swellable MgAl-LDH (Layered Double Hydroxide) Hybrids: Synthesis, Characterization, and Film Preparation (2008) Langmuir, 24, pp. 5591-5598
  • Miyata, S., Anion-Exchange Properties of Hydrotalcite-Like Compounds (1983) Clays Clay Miner., 31, pp. 305-311
  • Jobbágy, M., Regazzoni, A.E., Anion-Exchange Equilibrium and Phase Segregation in Hydrotalcite Systems: Intercalation of Hexacyanoferrate(III) Ions (2005) J. Phys. Chem. B, 109, pp. 389-393
  • Oestreicher, V., Jobbágy, M., Regazzoni, A.E., Halide Exchange on Mg(II)-Al(III) Layered Double Hydroxides: Exploring Affinities and Electrostatic Predictive Models (2014) Langmuir, 30, pp. 8408-8415
  • Costantino, U., Vivani, R., Bastianini, M., Costantino, F., Nocchetti, M., Ion Exchange and Intercalation Properties of Layered Double Hydroxides Towards Halide Anions (2014) Dalton Trans., 43, pp. 11587-11596
  • Liu, Z.P., Ma, R.Z., Osada, M., Iyi, N., Ebina, Y., Takada, K., Sasaki, T., Synthesis, Anion Exchange, and Delamination of Co-Al Layered Double Hydroxide: Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies (2006) J. Am. Chem. Soc., 128, pp. 4872-4880
  • Li, L., Ma, R.Z., Iyi, N., Ebina, Y., Takada, K., Sasaki, T., Hollow Nanoshell of Layered Double Hydroxide (2006) Chem. Commun. (Cambridge, U.K.), pp. 3125-3127
  • Wang, Q., O'Hare, D., Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets (2012) Chem. Rev. (Washington, DC, U.S.), 112, pp. 4124-4155
  • Antonyraj, C.A., Koilraj, P., Kannan, S., Synthesis of Delaminated LDH: A Facile Two Step Approach (2010) Chem. Commun. (Cambridge, U.K.), 46, pp. 1902-1904
  • Manohara, G.V., Kunz, D.A., Kamath, P.V., Milius, W., Breu, J., Homogeneous Precipitation by Formamide Hydrolysis: Synthesis, Reversible Hydration, and Aqueous Exfoliation of the Layered Double Hydroxide (LDH) of Ni and Al (2010) Langmuir, 26, pp. 15586-15591
  • Cai, H., Hillier, A.C., Franklin, K.R., Nunn, C.C., Ward, M.D., Nanoscale Imaging of Molecular Adsorption (1994) Science, 266, pp. 1551-1555
  • Costantino, U., Marmottini, F., Nocchetti, M., Vivani, R., New Synthetic Routes to Hydrotalcite-Like Compounds. Characterisation and Properties of the Obtained Materials (1998) Eur. J. Inorg. Chem., pp. 1439-1446
  • Ogawa, M., Kaiho, H., Homogeneous Precipitation of Uniform Hydrotalcite Particles (2002) Langmuir, 18, pp. 4240-4242
  • Benito, P., Herrero, M., Barriga, C., Labajos, F.M., Rives, V., Microwave-Assisted Homogeneous Precipitation of Hydrotalcites by Urea Hydrolysis (2008) Inorg. Chem., 47, pp. 5453-5463
  • Jobbágy, M., Blesa, M.A., Regazzoni, A.E., Homogeneous Precipitation of Layered Ni(II)-Cr(III) Double Hydroxides (2007) J. Colloid Interface Sci., 309, pp. 72-77
  • Oh, J.M., Hwang, S.H., Choy, J.H., The Effect of Synthetic Conditions on Tailoring the Size of Hydrotalcite Particles (2002) Solid State Ionics, 151, pp. 285-291
  • Inayat, A., Klumpp, M., Schwieger, W., The Urea Method for the Direct Synthesis of ZnAl Layered Double Hydroxides with Nitrate as the Interlayer Anion (2011) Appl. Clay Sci., 51, pp. 452-459
  • Oestreicher, V., Jobbágy, M., One Pot Synthesis of Mg2Al(OH)6Cl·1.5H2O Layered Double Hydroxides: The Epoxide Route (2013) Langmuir, 29, pp. 12104-12109
  • Brönsted, J.N., Kilpatrick, M., Kilpatrick, M., Kinetic Studies on Ethylene Oxides (1929) J. Am. Chem. Soc., 51, pp. 428-461
  • Tolentino, H., Cezar, J.C., Cruz, D.Z., Compagnon-Cailhol, V., Tamura, E., Alves, M.C.M., Commissioning and First Results of the LNLS XAFS Beamline (1998) J. Synchrotron Radiat., 5, pp. 521-523
  • Gash, A.E., Tillotson, T.M., Satcher, J.H., Poco, J.F., Hrubesh, L.W., Simpson, R.L., Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts (2001) Chem. Mater., 13, pp. 999-1007
  • Gash, A.E., Tillotson, T.M., Satcher, J.H., Hrubesh, L.W., Simpson, R.L., New Sol-Gel Synthetic Route to Transition and Main-Group Metal Oxide Aerogels Using Inorganic Salt Precursors (2001) J. Non-Cryst. Solids, 285, pp. 22-28
  • Gash, A.E., Satcher, J.H., Simpson, R.L., Monolithic Nickel(II)-Based Aerogels Using an Organic Epoxide: The Importance of the Counterion (2004) J. Non-Cryst. Solids, 350, pp. 145-151
  • Gash, A.E., Satcher, J.H., Simpson, R.L., Strong Akaganeite Aerogel Monoliths Using Epoxides: Synthesis and Characterization (2003) Chem. Mater., 15, pp. 3268-3275
  • Zhang, H.D., Li, B., Zheng, Q.X., Jiang, M.H., Tao, X.T., Synthesis and Characterization of Monolithic Gd2O3 Aerogels (2008) J. Non-Cryst. Solids, 354, pp. 4089-4093
  • Ehrenberg, L., Hussain, S., Genetic Toxicity of Some Important Epoxides (1981) Mutat. Res., 86, pp. 1-113
  • Cui, H.T., Zhao, Y.N., Ren, W.Z., Wang, M.M., Liu, Y., Large Scale Selective Synthesis of α-Co(OH)2 and β-Co(OH)2 Nanosheets through a Fluoride Ions Mediated Phase Transformation Process (2013) J. Alloys Compd., 562, pp. 33-37
  • Ma, R.Z., Liu, Z.P., Takada, K., Fukuda, K., Ebina, Y., Bando, Y., Sasaki, T., Tetrahedral Co(II) Coordination in α-Type Cobalt Hydroxide: Rietveld Refinement and X-Ray Absorption Spectroscopy (2006) Inorg. Chem., 45, pp. 3964-3969
  • Leroux, F., Moujahid, E., Taviot-Gueho, C., Besse, J.P., Effect of Layer Charge Modification for Co-A1 Layered Double Hydroxides: Study by X-Ray Absorption Spectroscopy (2001) Solid State Sci., 3, pp. 81-92
  • Johnsen, R.E., Krumeich, F., Norby, P., Structural and Microstructural Changes during Anion Exchange of CoAl Layered Double Hydroxides: An in Situ X-Ray Powder Diffraction Study (2010) J. Appl. Crystallogr., 43, pp. 434-447
  • Richardson, I.G., Zn- and Co-Based Layered Double Hydroxides: Prediction of the a Parameter from the Fraction of Trivalent Cations and Vice Versa (2013) Acta Crystallogr., Sect. B: Struct. Sci., 69, pp. 414-417
  • Ma, R., Takada, K., Fukuda, K., Iyi, N., Bando, Y., Sasaki, T., Phase Transitions - Topochemical Synthesis of Monometallic (Co2+-Co3+) Layered Double Hydroxide and Its Exfoliation into Positively Charged Co(OH)2 Nanosheets (2008) Angew. Chem., Int. Ed., 47, pp. 86-89
  • Radha, S., Kamath, P.V., Structural Synthon Approach to Predict the Possible Polytypes of Layered Double Hydroxides (2012) Z. Anorg. Allg. Chem., 638, pp. 2317-2323
  • Bi, S.P., Wang, C.Y., Cao, Q., Zhang, C.H., Studies on the Mechanism of Hydrolysis and Polymerization of Aluminum Salts in Aqueous Solution: Correlations between the "core-Links" Model and "cage-Like" Keggin-Al-13 Model (2004) Coord. Chem. Rev., 248, pp. 441-455
  • Vermeulen, A.C., Geus, J.W., Stol, R.J., Debruyn, P.L., Hydrolysis-Precipitation Studies of Aluminum (III) Solutions 0.1. Titration of Acidified Aluminum Nitrate Solutions (1975) J. Colloid Interface Sci., 51, pp. 449-458
  • Stol, R.J., Vanhelden, A.K., De Bruyn, P.L., Hydrolysis-Precipitation Studies of Aluminum (III) Solutions 0.2. Kinetic Study and Model (1976) J. Colloid Interface Sci., 57, pp. 115-131
  • Boclair, J.W., Braterman, P.S., Layered Double Hydroxide Stability. 1. Relative Stabilities of Layered Double Hydroxides and Their Simple Counterparts (1999) Chem. Mater., 11, pp. 298-302
  • Parks, G.A., The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems (1965) Chem. Rev. (Washington, DC, U.S.), 65, pp. 177-198
  • Hiemstra, T., Yong, H., Van Riemsdijk, W.H., Interfacial Charging Phenomena of Aluminum (Hydr)Oxides (1999) Langmuir, 15, pp. 5942-5955
  • Kosmulski, M., PH-dependent Surface Charging and Points of Zero Charge III. Update (2006) J. Colloid Interface Sci., 298, pp. 730-741
  • Kosmulski, M., Plak, A., Surface Charge of Anatase and Alumina in Mixed Solvents (1999) Colloids Surf., A, 149, pp. 409-412
  • Vakros, J., Bourikas, K., Perlepes, S., Kordulis, C., Lycourghiotis, A., Adsorption of Cobalt Ions on the "electrolytic Solution/Î3-Alumina" Interface Studied by Diffuse Reflectance Spectroscopy (DRS) (2004) Langmuir, 20, pp. 10542-10550
  • Ataloglou, T., Bourikas, K., Vakros, J., Kordulis, C., Lycourghiotis, A., Kinetics of Adsorption of the Cobalt Ions on the "electrolytic Solution/Î3-Alumina" Interface (2005) J. Phys. Chem. B, 109, pp. 4599-4607
  • Spanos, N., Lycourghiotis, A., Mechanism of Deposition of Co2+ and Ni2+ Ions on the Interface between Pure and F-Doped Î3 -Alumina and the Impregnating Solution (1993) J. Chem. Soc., Faraday Trans., 89, pp. 4101-4107
  • Scheidegger, A.M., Lamble, G.M., Sparks, D.L., Spectroscopic Evidence for the Formation of Mixed-Cation Hydroxide Phases Upon Metal Sorption on Clays and Aluminum Oxides (1997) J. Colloid Interface Sci., 186, pp. 118-128
  • D'Espinose De La Caillerie, J.B., Kermarec, M., Clause, O., Impregnation of Î3-Alumina with Ni(II) or Co(II) Ions at Neutral pH: Hydrotalcite-Type Coprecipitate Formation and Characterization (1995) J. Am. Chem. Soc., 117, pp. 11471-11481
  • D'Espinose De La Caillerie, J.B., Clause, O., Promotion of Î3-Alumina Dissolution by Metal Ions during Impregnation. Thermal Stability of the Formed Coprecipitates (1996) Stud. Surf. Sci. Catal., 101, pp. 1321-1330
  • Xu, R., Zeng, H.C., Synthesis of Nanosize Supported Hydrotalcite-Like Compounds CoAlx(OH)2+2 x(CO3)y(NO3)x -2 y· n H2O on Î3-Al2O3 (2001) Chem. Mater., 13, pp. 297-303
  • Yang, Y., Zhao, X., Zhu, Y., Zhang, F., Transformation Mechanism of Magnesium and Aluminum Precursor Solution into Crystallites of Layered Double Hydroxide (2012) Chem. Mater., 24, pp. 81-87
  • Okamoto, K., Iyi, N., Sasaki, T., Factors Affecting the Crystal Size of the MgAl-LDH (Layered Double Hydroxide) Prepared by Using Ammonia-Releasing Reagents (2007) Appl. Clay Sci., 37, pp. 23-31
  • Gregoire, B., Ruby, C., Carteret, C., Hydrolysis of Mixed Ni2+-Fe3+ and Mg2+-Fe3+ Solutions and Mechanism of Formation of Layered Double Hydroxides (2013) Dalton Trans., 42, pp. 15687-15698
  • Soler-Illia, G., Jobbágy, M., Regazzoni, A.E., Blesa, M.A., Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism (1999) Chem. Mater., 11, pp. 3140-3146
  • Delahaye-Vidal, A., Beaudoin, B., Sac-Epee, N., Tekaia-Elhsissen, K., Audemer, A., Figlarz, M., Structural and Textural Investigations of the Nickel Hydroxide Electrode (1996) Solid State Ionics, 84, pp. 239-248
  • Oliva, P., Leonardi, J., Laurent, J.F., Delmas, C., Braconnier, J.J., Figlarz, M., Fievet, F., Deguibert, A., Review of the Structure and the Electrochemistry of Nickel Hydroxides and Oxy-Hydroxides (1982) J. Power Sources, 8, pp. 229-255
  • Richardson, I.G., The Importance of Proper Crystal-Chemical and Geometrical Reasoning Demonstrated Using Layered Single and Double Hydroxides (2013) Acta Crystallogr., Sect. B: Struct. Sci., 69, pp. 150-162
  • Li, H.B., Yu, M.H., Wang, F.X., Liu, P., Liang, Y., Xiao, J., Wang, C.X., Yang, G.W., Amorphous Nickel Hydroxide Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials (2013) Nat. Commun., 4, pp. 101038/ncomms2932
  • Liu, X.H., Ma, R.Z., Bando, Y., Sasaki, T., A General Strategy to Layered Transition-Metal Hydroxide Nanocones: Tuning the Composition for High Electrochemical Performance (2012) Adv. Mater. (Weinheim, Ger.), 24, pp. 2148-2153
  • Thomas, N., Rajamathi, M., Near 100% Selectivity in Anion Exchange Reactions of Layered Zinc Hydroxy Nitrate (2011) J. Colloid Interface Sci., 362, pp. 493-496
  • Tanaka, H., Fujioka, A., Futoyu, A., Kandori, K., Ishikawa, T., Synthesis and Characterization of Layered Zinc Hydroxychlorides (2007) J. Solid State Chem., 180, pp. 2061-2066
  • Abellan, G., Carrasco, J.A., Coronado, E., Room Temperature Magnetism in Layered Double Hydroxides Due to Magnetic Nanoparticles (2013) Inorg. Chem., 52, pp. 7828-7830
  • Alejandre, A., Medina, F., Salagre, P., Correig, X., Sueiras, J.E., Preparation and Study of Cu-Al Mixed Oxides Via Hydrotalcite-Like Precursors (1999) Chem. Mater., 11, pp. 939-948
  • Yan, H., Wei, M., Ma, J., Li, F., Evans, D.G., Duan, X., Theoretical Study on the Structural Properties and Relative Stability of M(II)-Al Layered Double Hydroxides Based on a Cluster Model (2009) J. Phys. Chem. A, 113, pp. 6133-6141
  • Hibino, T., Ohya, H., Synthesis of Crystalline Layered Double Hydroxides: Precipitation by Using Urea Hydrolysis and Subsequent Hydrothermal Reactions in Aqueous Solutions (2009) Appl. Clay Sci., 45, pp. 123-132
  • Fogg, A.M., Williams, G.R., Chester, R., O'Hare, D., A Novel Family of Layered Double Hydroxides - MAl4(OH)12(NO3)2·H2O (M = Co, Ni, Cu, Zn) (2004) J. Mater. Chem., 14, pp. 2369-2371
  • Jobbágy, M., Regazzoni, A.E., Dissolution of Nano-Size Mg-Al-Cl Hydrotalcite in Aqueous Media (2011) Appl. Clay Sci., 51, pp. 366-369
  • Allada, R.K., Navrotsky, A., Berbeco, H.T., Casey, W.H., Thermochemistry and Aqueous Solubilities of Hydrotalcite-Like Solids (2002) Science, 296, pp. 721-723
  • Bravo-Suárez, J.J., Páez-Mozo, E.A., Oyama, S.T., Models for the Estimation of Thermodynamic Properties of Layered Double Hydroxides: Application to the Study of Their Anion Exchange Characteristics (2004) Quim. Nova, 27, pp. 574-581
  • Bravo-Suarez, J.J., Paez-Mozo, E.A., Oyama, S.T., Review of the Synthesis of Layered Double Hydroxides: A Thermodynamic Approach (2004) Quim. Nova, 27, pp. 601-614
  • (2004) Dean's Analytical Chemistry Handbook, , 2 nd ed. McGraw-Hill: New York
  • (1998) Lange's Handbook of Chemistry, , McGraw-Hill: New York
  • Baes, C.F.J., Mesmer, R.E., (1976) The Hydrolysis of Cations, , Wiley: New York

Citas:

---------- APA ----------
Oestreicher, V., Fábregas, I. & Jobbágy, M. (2014) . One-pot epoxide-driven synthesis of M2Al(OH)6Cl·1.5H2O layered double hydroxides: Precipitation mechanism and relative stabilities. Journal of Physical Chemistry C, 118(51), 30274-30281.
http://dx.doi.org/10.1021/jp510341q
---------- CHICAGO ----------
Oestreicher, V., Fábregas, I., Jobbágy, M. "One-pot epoxide-driven synthesis of M2Al(OH)6Cl·1.5H2O layered double hydroxides: Precipitation mechanism and relative stabilities" . Journal of Physical Chemistry C 118, no. 51 (2014) : 30274-30281.
http://dx.doi.org/10.1021/jp510341q
---------- MLA ----------
Oestreicher, V., Fábregas, I., Jobbágy, M. "One-pot epoxide-driven synthesis of M2Al(OH)6Cl·1.5H2O layered double hydroxides: Precipitation mechanism and relative stabilities" . Journal of Physical Chemistry C, vol. 118, no. 51, 2014, pp. 30274-30281.
http://dx.doi.org/10.1021/jp510341q
---------- VANCOUVER ----------
Oestreicher, V., Fábregas, I., Jobbágy, M. One-pot epoxide-driven synthesis of M2Al(OH)6Cl·1.5H2O layered double hydroxides: Precipitation mechanism and relative stabilities. J. Phys. Chem. C. 2014;118(51):30274-30281.
http://dx.doi.org/10.1021/jp510341q