Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Biofilms cause biofouling, pipe plugging, prostheses colonization, disease, and nosocomial infections. Bacterial biofilms are more resilient to sterilization methods than planktonic bacteria; therefore, better control methods are required. The use of gas discharge plasmas is an appropriate alternative because plasmas contain a mixture of reactive agents that are well known for bacterial decontamination. This study assesses culture medium-abiotic surface combinations leading to robust biofilms and tests an air-based coaxial dielectric barrier discharge (DBD) plasma source on Pseudomonas aeruginosa biofilms grown in continuous culture under those selected conditions. Biofilms were eradicated after a 15-min plasma treatment, resulting in a CFU/mL decrease of 5.6 log10 units. CFU/mL decreases of 1.6 and 2.7 log10 units were achieved after a 3-min plasma exposure to ambient and moistened air plasma, respectively, although viability assays showed that some cells were alive. Moistened-air plasma resulted in a faster biofilm inactivation, with decimal reduction times of 1.14 and 4.36 min. The coaxial DBD air-based plasma source presented here is effective for Pseudomonas biofilm inactivation, affordable because it does not rely on expensive gases, and easy to handle for indirect surface treatment. To the best of our knowledge, the search for the best combination medium surface leading to robust biofilms before plasma treatment has not been previously assessed. © 2017 by Begell House, Inc.

Registro:

Documento: Artículo
Título:Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication
Autor:Soler-Arango, J.; Xaubet, M.; Giuliani, L.; Grondona, D.; Brelles-Mariño, G.
Filiación:Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Física del Plasma-CONICET (INFIP), Buenos Aires, Argentina
Universidad de la Marina Mercante (UdeMM), Facultad de Ingeniería, Laboratorio de Micro y Nanofluídica y Plasma, Buenos Aires, Argentina
Palabras clave:Air-based plasma; Biofilm eradication; Biofilms; Non-thermal plasmas; Pseudomonas aeruginosa; Pseudomonas biofilms; Sterilization; Airports; Bacteria; Biofilms; Dielectric devices; Dielectric materials; Flow control; Military bases; Plasma applications; Plasma sources; Plasma theory; Sterilization (cleaning); Surface treatment; Continuous culture; Decimal reduction; Dielectric barrier discharge plasmas; Gas-discharge plasmas; Nonthermal plasma; Nosocomial infection; Planktonic bacteria; Pseudomonas aeruginosa; Electric discharges; carbon; cell DNA; deoxyribonuclease; glass; polycarbonate; stainless steel; air; airflow; ambient air; Article; bacterial viability; biofilm; carbon source; cell density; cell survival; chemical composition; colony forming unit; continuous culture; controlled study; culture medium; electric potential; electrode; epifluorescence microscopy; hydrophilicity; hydrophobicity; nonhuman; pH; physical chemistry; priority journal; Pseudomonas aeruginosa; reduction (chemistry); static electricity; surface property; surface tension; survival rate; temperature sensitivity; waveform
Año:2017
Volumen:7
Número:1
Página de inicio:43
Página de fin:63
DOI: http://dx.doi.org/10.1615/PlasmaMed.2017020485
Título revista:Plasma Medicine
Título revista abreviado:Plasma Med.
ISSN:19475764
CAS:carbon, 7440-44-0; deoxyribonuclease, 37211-67-9; polycarbonate, 24936-68-3, 25766-59-0; stainless steel, 12597-68-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19475764_v7_n1_p43_SolerArango

Referencias:

  • Kolter, R., Losick, R., One for all and all for one (1998) Science, 280, pp. 226-227
  • Stoodley, P., Sauer, K., Davies, D.G., Costerton, J.W., Biofilms as complex differentiated communities (2002) Annu Rev Microbiol, 56, pp. 187-209
  • Costerton, J.W., Stewart, P.S., Greenberg, E.P., Bacterial biofilms: A common cause of persistent infections Science, 199 (284), pp. 1318-1322
  • Park, S.R., Mackay, W.G., Reid, D.F., Helicobacter sp recovered from drinking water biofilm samples from a water distribution system (2001) Water Res, 35, pp. 1624-1626
  • Brelles-Mariño, G., Challenges in biofilm inactivation: The use of cold plasma as a new approach (2012) J Bioproces Biotech, 2, p. 4. , http://www.omicsonline.org/2155-9821/2155-9821-2-e107.pdf
  • Hoyle, B.D., Costerton, J.W., Bacterial resistance to antibiotics: The role of biofilms (1991) Progr Drug Res, 37, pp. 91-105
  • Leriche, V., Briandet, R., Carpentier, B., Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: Spatial distribution of bacterial species suggests a protective effect of one species to another (2003) Environ Microbiol, 5, pp. 64-71
  • Saravanan, P., Nancharaiah, Y.V., Venugopalan, V.P., Rao, T.S., Jayachandran, S., Biofilm formation by Pseudoalteromonas ruthenica and its removal by chlorine (2006) Biofouling, 22, pp. 371-378
  • Stewart, P.S., Mechanisms of antibiotic resistance in bacterial biofilms (2002) Int J Med Microbiol, 292, pp. 107-113
  • Stewart, P.S., Costerton, J.W., Antibiotic resistance of bacteria in biofilms (2001) Lancet, 358, pp. 135-138
  • Abramzon, N., Joaquin, J.C., Bray, J.D., Brelles-Mariño, G., Biofilm destruction by RF high-pressure cold plasma jet (2006) IEEE Trans Plasma Sci, 34, pp. 1304-1309
  • Ben Belgacem, Z., Carré, G., Boudifa, M., Charpentier, E., Cawe, B., Gellé, M.P., Effectiveness of non-thermal O2–N2 plasma on P. Aeruginosa multilayer biofilms cultured on hydroxyapatite (2016) IRBM, 37, pp. 68-74
  • Gabriel, A.A., Ugay, M., Siringan, M., Rosario, L., Tumlos, R.B., Ramos, H.J., Atmospheric pressure plasma jet inactivation of Pseudomonas aeruginosa biofilms on stainless steel surfaces (2016) Innov Food Sci Emerg, 36, pp. 311-319
  • Heaselgrave, W., Shama, G., Rew, P.W., Kong, M.G., Inactivation of Acanthamoeba spp. And other ocular pathogens by application of cold atmospheric gas plasma (2016) Appl Environ Microbiol, 82, pp. 3143-3148
  • Hoffmann, C., Berganza, C., Zhang, J., Cold Atmospheric plasma: Methods of production and application in dentistry and oncology (2013) Med Gas Res, 3, p. 21
  • Joaquin, J., Kwan, C., Abramzon, N., Vandervoort, K., Brelles-Mariño, G., Is gas-discharge plasma a new solution to the old problem of biofilm inactivation? (2009) Microbiology, 175, pp. 724-732
  • Modic, M., McLeod, N.P., Sutton, J.M., Walsh, J.L., Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms (2017) Int J Antimicrob Ag, 49, pp. 375-378
  • Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., Yahia, L.H., Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms (2001) Int J Pharm, 226, pp. 1-21
  • Moisan, M., Barbeau, J., Crevier, M.C., Pelletier, J., Philip, N., Saoudi, B., Plasma sterilization: Methods and mechanisms (2002) Pure Appl Chem., 74, pp. 349-358
  • Pignata, C., D’Angelo, D., Fea, E., Gilli, G., A review on microbiological decontamination of fresh produce with nonthermal plasma (2017) J Appl Microbiol, 122 (6), pp. 1438-1455
  • Puligundla, P., Mok, C., Potential applications of nonthermal plasmas against biofilm-associated microorganisms in vitro (2017) J Appl Microbiol, 122 (5), pp. 1134-1148
  • Purevdorj, D., Igura, N., Ariyada, O., Hayakawa, I., Effect of feed gas composition of gas discharge plasmas on Bacillus pumilus spore mortality (2003) Lett Appl Microbiol, 37, pp. 31-34
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., Julak, J., Nonthermal plasma—A tool for decontamination and disinfection (2015) Biotechnol Adv, 33, pp. 1108-1119
  • Vandervoort, K.G., Brelles-Mariño, G., Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system (2014) Plos ONE, 9 (10)
  • Zelaya, A., Stough, G., Rad, N., Vandervoort, K., Brelles-Mariño, G., Pseudomonas aeruginosa biofilm inactivation: Decreased cell culturability, adhesiveness to surfaces, and biofilm thickness upon highpressure non-thermal plasma treatment (2010) IEEE Trans Plasma Sci, 38, pp. 3398-3403
  • Zelaya, A., Vandervoort, K., Brelles-Mariño, G., Battling bacterial biofilms with gas discharge plasma (2012) NATO Science for Peace and Security Series. Plasma for Biodecontamination, Medicine and Food Security, pp. 135-148. , Machala Z, Hensel K, Akishev Y, editors, Dordrecht, Germany: Springer
  • Ziuzina, D., Patil, S., Cullen, P.J., Boehm, D., Bourke, P., Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms (2014) Plasma Med, 4, pp. 137-152
  • Ziuzina, D., Boehm, D., Patil, S., Cullen, P.J., Bourke, P., Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors (2015) Plos ONE, 10
  • Kogelschatz, U., Dielectric-barrier discharges: Their history, discharge physics, and industrial applications (2003) Plasma Chem Plasma Process, 23, pp. 1-46
  • Fridman, G., Non-equilibrium plasmas in biology and medicine (2010) Biological and Environmental Applications of Gas Discharge Plasmas, pp. 99-188. , Brelles-Mariño G, editor, New York: Nova Science Publishers
  • Mertens, N., Viöl, W., Dielectric barrier discharge: A versatile tool for biological applications (2010) Biological and Environmental Applications of Gas Discharge Plasmas, pp. 237-262. , Brelles- Mariño G, editor, New York: Nova Science Publishers
  • Sladek, R., Fioloche, S.K., Sissons, C.H., Stoffels, E., Treatment of Streptococcus mutans biofilms with a non-thermal atmospheric plasma (2007) Lett Appl Microbiol, 45, pp. 318-323
  • Cheng, H., Liu, X., Lu, X., Liu, D., Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple (2016) Phys Plasma, 23
  • Gaunt, L.F., Beggs, C.B., Georghiou, G.E., Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: A review (2006) IEEE Trans Plasma Sci, 34 (4), pp. 1257-1269
  • Laroussi, M., Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects (2002) IEEE Trans Plasma Sci, 30, pp. 1409-1415
  • Klämpfl, T.G., Isbary, G., Shimizu, T., Li, Y.F., Zimmermann, J.L., Stolz, W., Schlegel, J., Schmidt, H.U., Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest (2012) Appl Environ Microbiol, 78, pp. 5077-5082
  • Matthes, R., Bender, C., Schlüter, R., Koban, I., Bussiahn, R., Reuter, S., Lademann, J., Kramer, A., Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms (2013) Plos ONE, 8
  • Akishev, Y.S., Grushin, M.E., Karalnik, V.B., Monich, A.E., Pan’Kin, M.V., Trushkin, N.I., Kholodenko, V., Kobzev, E.O., Sterilization/decontamination of physiological solution and dry surface by non-thermal plasma created in bubbles and jet (2005) Proceedings of the 2Nd International Workshop on Cold Atmospheric Pressure Plasmas: Sources and Applications CAPPSA, pp. 69-72. , Bruges, Belgium
  • Akishev, Y., Grushin, M., Karalkin, V., Trushkin, N., Kholodenko, V., Chugunov, V., Kobzev, E., Kireev, G., Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces (2008) Pure Appl Chem, 80, p. 1953
  • Becker, K., Koutsospyros, A., Yin, S.M., Christodoulatos, C., Abramzon, N., Joaquin, J.C., Brelles-Mariño, G., Environmental and biological applications of microplasmas (2005) Plasma Phys Control Fusion, 47, pp. B513-B523
  • Brelles-Mariño, G., Joaquin, J.C., Bray, J.D., Abramzon, N., Gas discharge plasma as a novel tool for biofilm destruction (2005) Proceedings of the 2Nd International Workshop on Cold Atmospheric Pressure Plasmas: Sources and Applications CAPPSA, pp. 69-72. , Bruges, Belgium
  • Alkawareek, M.Y., Algwari, Q.T., Laverty, G., Gorman, S.P., Graham, W.G., O’Connell, D., Gilmore, B.F., Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma (2012) Plos ONE, 7 (8)
  • Allesen-Holm, M., Barken, K.B., Yang, L., Klausen, M., Webb, J.S., Kjelleberg, S., Molin, S., Tolker-Nielsen, T., A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms (2006) Mol Microbiol, 59, pp. 1114-1128
  • Mai-Prochnow, A., Bradbury, M., Ostrikov, K., Murphy, A.B., Pseudomonas aeruginosa biofilm response and resistance to cold atmospheric pressure plasma is linked to the redox-active molecule phenazine (2015) Plos ONE, 10 (6)
  • Tümmler, B., Kiewitz, C., Cystic fibrosis: An inherited susceptibility to bacterial respiratory infections (1999) Mol Med Today, 5, pp. 351-358
  • Davey, M.E., Caiazza, N.C., O’Toole, G.A., Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1 (2003) J Bacteriol, 185, pp. 1027-1036
  • Gillis, R.J., Iglewski, B.H., Azithromycin retards Pseudomonas aeruginosa biofilm formation (2004) J Clin Microbiol, 42, pp. 5842-5845
  • Tanaka, G., Shigeta, M., Komatsuzawa, H., Sugai, M., Suginaka, H., Usui, T., Effect of clarithromycin on Pseudomonas aeruginosa biofilms (2000) Chemotherapy, 46, pp. 36-42
  • Banin, E., Vasil, M.L., Greenberg, E.P., Iron and Pseudomonas aeruginosa biofilm formation (2005) Proc Natl Acad Sci, 102, pp. 11076-11081
  • Davies, D., Parsek, M., Pearson, J., Iglewski, B., Costerton, J.W., Greenberg, E.P., The use of signal molecules to manipulate the behavior of biofilm bacteria (1999) Clin Microbial Infect, 5, pp. 5S7-8
  • Hentzer, M., Riedel, K., Rasmussen, T.B., Heydorn, A., Ersen, J.B., Parsek, M.R., Rice, S.A., Givskov, M., Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound (2002) Microbiology, 148, pp. 87-102
  • Balazs, D.J., Triandafillu, K., Wood, P., Chevolot, Y., Van Delden, C., Harms, H., Hollenstein, C., Mathieu, J.H., Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments (2003) Biomaterials, 11, pp. 2139-2151
  • Bryers, J.D., Ratner, B.D., Bioinspired implant materials befuddle bacteria (2004) ASM News, 70, pp. 232-237
  • Schutze, J.Y., Jeong, S.E., Park, J., Selwyn, G.S., Hicks, R.F., The atmospheric plasma jet: A review and comparison to other plasma sources (1998) IEEE Trans Plasma Sci, 26, pp. 1685-1694
  • Laux, C.O., Spence, T.G., Kruger, C.H., Zare, R.N., Optical diagnostics of atmospheric pressure air plasmas (2003) Plasma Sources Sci Technol, 12, pp. 125-138
  • Bertani, G., Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli (1951) J Bacteriol, 62, pp. 293-300
  • Clark, D.J., Maaløe, O., DNA replication and the division cycle in Escherichia coli (1967) J Mol Biol, 23, pp. 99-112
  • O’Toole, G.A., Kolter, R., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development (1998) Mol Microbiol, 30, pp. 295-304
  • Staack, D., Farouk, B., Gutsol, A.F., Fridman, A.A., Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air (2006) Plasma Sources Sci Technol, 15, pp. 818-827
  • Kushner, M., Kong, M., Fundamentals of non-equilibrium plasma (2012) Plasma Medicine, pp. 7-27. , Laroussi M, Kong M, Morfill G, Stoltz W, editors, Cambridge: Cambridge University Press
  • Walsh, J.L., Kong, M.G., 10 ns Pulsed atmospheric air plasma for uniform treatment of polymeric surfaces (2007) Appl Phys Lett, 91
  • Hohmann, S., Kögel, S., Brunner, Y., Schmieg, B., Ewald, C., Kirschhöfer, F., Brenner-Weiß, G., Länge, K., Surface acoustic wave (SAW) resonators for monitoring conditioning film formation (2015) Sensors, 15 (5), pp. 11873-11888
  • Kirschhöfer, F., Rieder, A., Prechtl, C., Kühl, B., Sabljo, K., Wöll, C., Obst, U., Brenner-Weiß. Quartz crystal microbalance with dissipation coupled to on-chip MALDI-ToF mass spectrometry (QCM-D-MALDI) as a tool for characterising proteinaceous conditioning films on functionalised surfaces (2013) Analyt Chim Acta, 802, pp. 95-102
  • Lorite, G.S., Rodrigues, C.M., De Souza, A.A., Kranz, C., Mizaikoff, B., Cotta, M.A., The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution (2011) J Colloid Interface Sci, 359, pp. 289-295
  • Donlan, R.M., Role of biofilms in antimicrobial resistance (2002) ASAIO J, 46, pp. S47-S52
  • Fletcher, M., The applications of interference reflection microscopy to the study of bacterial adhesion to solid surfaces (1988) Biodeterioration, pp. 31-35. , Houghton DR, Smith RN, Eggins RN, Eggins HOW, editors. , London: Elsevier Applied Science
  • Fletcher, M., Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium- substratum separation distance (1998) J Bacteriol, 170, pp. 2027-2030
  • Pringle, J.H., Fletcher, M., Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces (1983) Appl Environ Microbiol, 45, pp. 811-817
  • Fletcher, M.L., Floodgate, G.D., An electron microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces (1973) J Gen Microbiol, 74, pp. 326-334
  • Fletcher, M., Loeb, G.I., Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces Appl Environ Microbiol, 37, pp. 67R-72R
  • Marshall, K.C., Stout, R., Mitchell, R., Mechanism of the initial events in the sorption of marine bacteria to surfaces (1971) J Gen Microbiol, 68, pp. 337-348
  • Corpe, W.A., Microbial surface components involved in adsorption of microorganisms onto surfaces (1980) Adsorption of Microorganisms to Surfaces, pp. 105-144. , Bitton G, Marshall KC, editors, New York: John Wiley & Sons
  • Brelles-Mariño, G., Boiardi, J.L., Nitrogen limitation of chemostat-grown Rhizobium etli elicits higher infection-thread formation in Phaseolus vulgaris (1996) Microbiology, 142, pp. 1067-1070
  • Sutherland, I.W., Biofilm exopolysaccharides: A strong and sticky framework (2001) Microbiology, 147, pp. 3-9
  • Flemming, H.C., Wingender, J., Griegbe, T., Mayer, C., Physico-chemical properties of biofilms (2000) Biofilms: Recent Advances in Their Study and Control, pp. 19-34. , Evans LV, editor, Amsterdam: Harwood Academic Publishers
  • Characklis, W.G., McFeters Ga Marshall, K.C., Physiological ecology in biofilm systems (1990) Biofilms, pp. 341-394. , Characklis WG, Marshall KC, editors, New York: John Wiley & Sons
  • Khan, M., Lee, E.J., Kim, Y.J., A submerged dielectric barrier discharge plasma inactivation mechanism of biofilms produced by Escherichia coli O157:H7, Cronobacter sakazakii, and Staphylococcus aureus (2016) Sci Rep, 6, p. 37072
  • Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C., Mattick, J.S., Extracellular DNA required for bacterial biofilm formation (2002) Science, 295 (5559), p. 1487

Citas:

---------- APA ----------
Soler-Arango, J., Xaubet, M., Giuliani, L., Grondona, D. & Brelles-Mariño, G. (2017) . Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication. Plasma Medicine, 7(1), 43-63.
http://dx.doi.org/10.1615/PlasmaMed.2017020485
---------- CHICAGO ----------
Soler-Arango, J., Xaubet, M., Giuliani, L., Grondona, D., Brelles-Mariño, G. "Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication" . Plasma Medicine 7, no. 1 (2017) : 43-63.
http://dx.doi.org/10.1615/PlasmaMed.2017020485
---------- MLA ----------
Soler-Arango, J., Xaubet, M., Giuliani, L., Grondona, D., Brelles-Mariño, G. "Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication" . Plasma Medicine, vol. 7, no. 1, 2017, pp. 43-63.
http://dx.doi.org/10.1615/PlasmaMed.2017020485
---------- VANCOUVER ----------
Soler-Arango, J., Xaubet, M., Giuliani, L., Grondona, D., Brelles-Mariño, G. Air-based coaxial dielectric barrier discharge plasma source for Pseudomonas aeruginosa biofilm eradication. Plasma Med. 2017;7(1):43-63.
http://dx.doi.org/10.1615/PlasmaMed.2017020485