Artículo

Ridano, M.E.; Subirada, P.V.; Paz, M.C.; Lorenc, V.E.; Stupirski, J.C.; Gramajo, A.L.; Luna, J.D.; Croci, D.O.; Rabinovich, G.A.; Sánchez, M.C. "Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF" (2017) Oncotarget. 8(20):32505-32522
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies. © Ridano et al.

Registro:

Documento: Artículo
Título:Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF
Autor:Ridano, M.E.; Subirada, P.V.; Paz, M.C.; Lorenc, V.E.; Stupirski, J.C.; Gramajo, A.L.; Luna, J.D.; Croci, D.O.; Rabinovich, G.A.; Sánchez, M.C.
Filiación:Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Córdoba, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
Centro Privado de Ojos Romagosa-Fundación VER, Córdoba, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Ophthalmology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales (FCEN), Mendoza, Argentina
Palabras clave:Galectin-1; Neovascularization; Neurodegeneration; Retinopathies; Vascular endothelial growth factor; bevacizumab; epitope; galectin 1; glycan; oxygen; vasculotropin; vasculotropin inhibitor; animal experiment; animal model; animal tissue; aqueous humor; Article; cell surface; controlled study; female; human; male; molecular imprinting; mouse; nonhuman; oxygen-induced retinopathy; perinatal period; phenotype; proliferative retinopathy; protein expression; protein localization; protein targeting; retina blood vessel; retina neovascularization; signal transduction; treatment response; upregulation
Año:2017
Volumen:8
Número:20
Página de inicio:32505
Página de fin:32522
DOI: http://dx.doi.org/10.18632/oncotarget.17129
Título revista:Oncotarget
Título revista abreviado:Oncotarget
ISSN:19492553
CAS:bevacizumab, 216974-75-3; galectin 1, 258495-34-0; oxygen, 7782-44-7; vasculotropin, 127464-60-2
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_19492553_v8_n20_p32505_Ridano

Referencias:

  • Friedlander, M., Dorrell, M.I., Ritter, M.R., Marchetti, V., Moreno, S.K., El-Kalay, M., Bird, A.C., Aguilar, E., Progenitor cells and retinal angiogenesis (2007) Angiogenesis, 10, pp. 89-101
  • Diabetic Retinopathy Clinical Research, N., Wells, J.A., Glassman, A.R., Ayala, A.R., Jampol, L.M., Aiello, L.P., Antoszyk, A.N., Ferris, F.L., Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema (2015) N Engl J Med, 372, pp. 1193-1203
  • Durham, J.T., Herman, I.M., Microvascular modifications in diabetic retinopathy (2011) Curr Diab Rep, 11, pp. 253-264
  • Aiello, L.P., Vascular endothelial growth factor and the eye: biochemical mechanisms of action and implications for novel therapies (1997) Ophthalmic Res, 29, pp. 354-362
  • Das, A., McGuire, P.G., Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition (2003) Prog Retin Eye Res, 22, pp. 721-748
  • Chung, A.S., Ferrara, N., Developmental and pathological angiogenesis (2011) Annu Rev Cell Dev Biol, 27, pp. 563-584
  • Tah, V., Orlans, H.O., Hyer, J., Casswell, E., Din, N., Sri Shanmuganathan, V., Ramskold, L., Pasu, S., Anti-VEGF Therapy and the Retina: An Update (2015) J Ophthalmol, 2015
  • Dorrell, M.I., Aguilar, E., Jacobson, R., Trauger, S.A., Friedlander, J., Siuzdak, G., Friedlander, M., Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy (2010) Glia, 58, pp. 43-54
  • Fu, Z., Nian, S., Li, S.Y., Wong, D., Chung, S.K., Lo, A.C., Deficiency of aldose reductase attenuates inner retinal neuronal changes in a mouse model of retinopathy of prematurity (2015) Graefes Arch Clin Exp Ophthalmol, 253, pp. 1503-1513
  • Liu, X., Wang, D., Liu, Y., Luo, Y., Ma, W., Xiao, W., Yu, Q., Neuronal-driven angiogenesis: role of NGF in retinal neovascularization in an oxygen-induced retinopathy model (2010) Invest Ophthalmol Vis Sci, 51, pp. 3749-3757
  • Bringmann, A., Pannicke, T., Grosche, J., Francke, M., Wiedemann, P., Skatchkov, S.N., Osborne, N.N., Reichenbach, A., Muller cells in the healthy and diseased retina (2006) Prog Retin Eye Res, 25, pp. 397-424
  • Barcelona, P.F., Ortiz, S.G., Chiabrando, G.A., Sanchez, M.C., alpha2-Macroglobulin induces glial fibrillary acidic protein expression mediated by low-density lipoprotein receptorrelated protein 1 in Muller cells (2011) Invest Ophthalmol Vis Sci, 52, pp. 778-786
  • Barcelona, P.F., Jaldin-Fincati, J.R., Sanchez, M.C., Chiabrando, G.A., Activated alpha2-macroglobulin induces Muller glial cell migration by regulating MT1-MMP activity through LRP1 (2013) FASEB J, 27, pp. 3181-3197
  • Lorenc, V.E., Jaldin-Fincati, J.R., Luna, J.D., Chiabrando, G.A., Sanchez, M.C., IGF-1 Regulates the Extracellular Level of Active MMP-2 and Promotes Muller Glial Cell Motility (2015) Invest Ophthalmol Vis Sci, 56, pp. 6948-6960
  • Cristina Hernández, M.D.M., Simó, R., Casini, G., Neuroprotection as a Therapeutic Target for Diabetic Retinopathy (2016) Journal of Diabetes Research, 2016, p. 18
  • Kim, C.B., D'Amore, P.A., Connor, K.M., Revisiting the mouse model of oxygen-induced retinopathy (2016) Eye Brain, 8, pp. 67-79
  • Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Ouyang, J., Mesri, E.A., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J Exp Med, 209, pp. 1985-2000
  • Baston, J.I., Baranao, R.I., Ricci, A.G., Bilotas, M.A., Olivares, C.N., Singla, J.J., Gonzalez, A.M., Meresman, G.F., Targeting galectin-1-induced angiogenesis mitigates the severity of endometriosis (2014) J Pathol, 234, pp. 329-337
  • Kanda, A., Noda, K., Saito, W., Ishida, S., Aflibercept Traps Galectin-1, an Angiogenic Factor Associated with Diabetic Retinopathy (2015) Sci Rep, 5, p. 17946
  • Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Verhofstad, N., Griffioen, A.W., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proc Natl Acad Sci U S A, 103, pp. 15975-15980
  • Laderach, D.J., Gentilini, L.D., Giribaldi, L., Delgado, V.C., Nugnes, L., Croci, D.O., Al Nakouzi, N., Chauchereau, A., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res, 73, pp. 86-96
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Khoury, S.J., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumorimmune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Banh, A., Zhang, J., Cao, H., Bouley, D.M., Kwok, S., Kong, C., Giaccia, A.J., Le, Q.T., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res, 71, pp. 4423-4431
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Martinez-Allo, V.C., Dergan-Dylon, S., Mendez-Huergo, S.P., Stupirski, J.C., Salatino, M., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Res, 73, pp. 1107-1117
  • Le, Q.T., Shi, G., Cao, H., Nelson, D.W., Wang, Y., Chen, E.Y., Zhao, S., Koong, A.C., Galectin-1: a link between tumor hypoxia and tumor immune privilege (2005) J Clin Oncol, 23, pp. 8932-8941
  • Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Jin, Y.T., Chen, Y.L., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 27, pp. 3746-3753
  • D'Haene, N., Sauvage, S., Maris, C., Adanja, I., Le Mercier, M., Decaestecker, C., Baum, L., Salmon, I., VEGFR1 and VEGFR2 involvement in extracellular galectin-1-and galectin-3-induced angiogenesis (2013) PLoS One, 8
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Bais, C., Glycosylation-dependent lectinreceptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • Smith, L.E., Wesolowski, E., McLellan, A., Kostyk, S.K., D'Amato, R., Sullivan, R., D'Amore, P.A., Oxygen-induced retinopathy in the mouse (1994) Invest Ophthalmol Vis Sci, 35, pp. 101-111
  • Connor, K.M., Krah, N.M., Dennison, R.J., Aderman, C.M., Chen, J., Guerin, K.I., Sapieha, P., Smith, L.E., Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis (2009) Nat Protoc, 4, pp. 1565-1573
  • Liu, G.D., Xu, C., Feng, L., Wang, F., The augmentation of O-GlcNAcylation reduces glyoxal-induced cell injury by attenuating oxidative stress in human retinal microvascular endothelial cells (2015) Int J Mol Med, 36, pp. 1019-1027
  • Simo, R., Carrasco, E., Garcia-Ramirez, M., Hernandez, C., Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy (2006) Curr Diabetes Rev, 2, pp. 71-98
  • Campochiaro, P.A., Molecular pathogenesis of retinal and choroidal vascular diseases (2015) Prog Retin Eye Res, 49, pp. 67-81
  • Liang, X., Zhou, H., Ding, Y., Li, J., Yang, C., Luo, Y., Li, S., Min, W., TMP prevents retinal neovascularization and imparts neuroprotection in an oxygen-induced retinopathy model (2012) Invest Ophthalmol Vis Sci, 53, pp. 2157-2169
  • Vessey, K.A., Wilkinson-Berka, J.L., Fletcher, E.L., Characterization of retinal function and glial cell response in a mouse model of oxygen-induced retinopathy (2011) J Comp Neurol, 519, pp. 506-527
  • Fletcher, E.L., Downie, L.E., Hatzopoulos, K., Vessey, K.A., Ward, M.M., Chow, C.L., Pianta, M.J., Wilkinson-Berka, J.L., The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy (2010) Doc Ophthalmol, 120, pp. 67-86
  • Sanchez, M.C., Barcelona, P.F., Luna, J.D., Ortiz, S.G., Juarez, P.C., Riera, C.M., Chiabrando, G.A., Low-density lipoprotein receptor-related protein-1 (LRP-1) expression in a rat model of oxygen-induced retinal neovascularization (2006) Exp Eye Res, 83, pp. 1378-1385
  • Bringmann, A., Iandiev, I., Pannicke, T., Wurm, A., Hollborn, M., Wiedemann, P., Osborne, N.N., Reichenbach, A., Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects (2009) Prog Retin Eye Res, 28, pp. 423-451
  • Duan, L.J., Takeda, K., Fong, G.H., Prolyl hydroxylase domain protein 2 (PHD2) mediates oxygen-induced retinopathy in neonatal mice (2011) Am J Pathol, 178, pp. 1881-1890
  • Narayanan, S.P., Xu, Z., Putluri, N., Sreekumar, A., Lemtalsi, T., Caldwell, R.W., Caldwell, R.B., Arginase 2 deficiency reduces hyperoxia-mediated retinal neurodegeneration through the regulation of polyamine metabolism (2014) Cell Death Dis, 5
  • Wang, L., Shi, P., Xu, Z., Li, J., Xie, Y., Mitton, K., Drenser, K., Yan, Q., Up-regulation of VEGF by retinoic acid during hyperoxia prevents retinal neovascularization and retinopathy (2014) Invest Ophthalmol Vis Sci, 55, pp. 4276-4287
  • Lewis, G.P., Matsumoto, B., Fisher, S.K., Changes in the organization and expression of cytoskeletal proteins during retinal degeneration induced by retinal detachment (1995) Invest Ophthalmol Vis Sci, 36, pp. 2404-2416
  • Sethi, C.S., Lewis, G.P., Fisher, S.K., Leitner, W.P., Mann, D.L., Luthert, P.J., Charteris, D.G., Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy (2005) Invest Ophthalmol Vis Sci, 46, pp. 329-342
  • Bringmann, A., Pannicke, T., Biedermann, B., Francke, M., Iandiev, I., Grosche, J., Wiedemann, P., Reichenbach, A., Role of retinal glial cells in neurotransmitter uptake and metabolism (2009) Neurochem Int, 54, pp. 143-160
  • Harada, T., Harada, C., Nakamura, K., Quah, H.M., Okumura, A., Namekata, K., Saeki, T., Tanaka, K., The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma (2007) J Clin Invest, 117, pp. 1763-1770
  • Croci, D.O., Cerliani, J.P., Pinto, N.A., Morosi, L.G., Rabinovich, G.A., Regulatory role of glycans in the control of hypoxiadriven angiogenesis and sensitivity to anti-angiogenic treatment (2014) Glycobiology, 24, pp. 1283-1290
  • Manzi, M., Bacigalupo, M.L., Carabias, P., Elola, M.T., Wolfenstein-Todel, C., Rabinovich, G.A., Espelt, M.V., Troncoso, M.F., Galectin-1 Controls the Proliferation and Migration of Liver Sinusoidal Endothelial Cells and Their Interaction With Hepatocarcinoma Cells (2016) J Cell Physiol, 231, pp. 1522-1533
  • Van Mourik, T.R., Lappchen, T., Rossin, R., Van Beijnum, J.R., Macdonald, J.R., Mayo, K.H., Griffioen, A.W., Grull, H., Evaluation of 111In-labeled Anginex as Potential SPECT Tracer for Imaging of Tumor Angiogenesis (2015) Anticancer Res, 35, pp. 5945-5954
  • Salatino, M., Croci, D.O., Laderach, D.J., Compagno, D., Gentilini, L., Dalotto-Moreno, T., Dergan-Dylon, L.S., Rabinovich, G.A., Regulation of galectins by hypoxia and their relevance in angiogenesis: strategies and methods (2015) Methods Mol Biol, 1207, pp. 293-304
  • Endo, T., Glycans and glycan-binding proteins in brain: galectin-1-induced expression of neurotrophic factors in astrocytes (2005) Curr Drug Targets, 6, pp. 427-436
  • Maldonado, C.A., Castagna, L.F., Rabinovich, G.A., Landa, C.A., Immunocytochemical study of the distribution of a 16-kDa galectin in the chicken retina (1999) Invest Ophthalmol Vis Sci, 40, pp. 2971-2977
  • Chen, W.S., Cao, Z., Leffler, H., Nilsson, U.J., Panjwani, N., Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis (2017) Invest Ophthalmol Vis Sci, 58, pp. 9-20
  • Sapieha, P., Joyal, J.S., Rivera, J.C., Kermorvant-Duchemin, E., Sennlaub, F., Hardy, P., Lachapelle, P., Chemtob, S., Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life (2010) J Clin Invest, 120, pp. 3022-3032
  • Niesman, M.R., Johnson, K.A., Penn, J.S., Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity (1997) Neurochem Res, 22, pp. 597-605
  • Penn, J.S., Tolman, B.L., Bullard, L.E., Effect of a water-soluble vitamin E analog, trolox C, on retinal vascular development in an animal model of retinopathy of prematurity (1997) Free Radic Biol Med, 22, pp. 977-984
  • Inafuku, S., Noda, K., Amano, M., Ohashi, T., Yoshizawa, C., Saito, W., Murata, M., Ishida, S., Alteration of N-Glycan Profiles in Diabetic Retinopathy (2015) Invest Ophthalmol Vis Sci, 56, pp. 5316-5322
  • Sirko, S., Irmler, M., Gascon, S., Bek, S., Schneider, S., Dimou, L., Obermann, J., Gotz, M., Astrocyte reactivity after brain injury-: The role of galectins 1 and 3 (2015) Glia, 63, pp. 2340-2361
  • Gaudet, A.D., Sweet, D.R., Polinski, N.K., Guan, Z., Popovich, P.G., Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair (2015) Mol Cell Neurosci, 64, pp. 84-94
  • Quinta, H.R., Pasquini, J.M., Rabinovich, G.A., Pasquini, L.A., Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury (2014) Cell Death Differ, 21, pp. 941-955
  • Kobayakawa, Y., Sakumi, K., Kajitani, K., Kadoya, T., Horie, H., Kira, J., Nakabeppu, Y., Galectin-1 deficiency improves axonal swelling of motor neurones in SOD1(G93A) transgenic mice (2015) Neuropathol Appl Neurobiol, 41, pp. 227-244
  • Eastlake, K., Heywood, W.E., Tracey-White, D., Aquino, E., Bliss, E., Vasta, G.R., Mills, K., Limb, G.A., Comparison of proteomic profiles in the zebrafish retina during experimental degeneration and regeneration (2017) Sci Rep, 7, p. 44601
  • Osaadon, P., Fagan, X.J., Lifshitz, T., Levy, J., A review of anti-VEGF agents for proliferative diabetic retinopathy (2014) Eye (Lond), 28, pp. 510-520
  • Akkoyun, I., Karabay, G., Haberal, N., Dagdeviren, A., Yilmaz, G., Oto, S., Erkanli, L., Akova, Y.A., Structural consequences after intravitreal bevacizumab injection without increasing apoptotic cell death in a retinopathy of prematurity mouse model (2012) Acta Ophthalmol, 90, pp. 564-570
  • Feng, F., Cheng, Y., Liu, Q.H., Bevacizumab treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity (2014) Int J Ophthalmol, 7, pp. 608-613
  • Ridano, M.E., Racca, A.C., Flores-Martin, J., Camolotto, S.A., de Potas, G.M., Genti-Raimondi, S., Panzetta-Dutari, G.M., Chlorpyrifos modifies the expression of genes involved in human placental function (2012) Reprod Toxicol, 33, pp. 331-338
  • Kahn, R., Buse, J., Ferrannini, E., Stern, M., The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes (2005) Diabetologia, 48, pp. 1684-1699
  • Sanchez, M.C., Luna, J.D., Barcelona, P.F., Gramajo, A.L., Juarez, P.C., Riera, C.M., Chiabrando, G.A., Effect of retinal laser photocoagulation on the activity of metalloproteinases and the alpha(2)-macroglobulin proteolytic state in the vitreous of eyes with proliferative diabetic retinopathy (2007) Exp Eye Res, 85, pp. 644-650

Citas:

---------- APA ----------
Ridano, M.E., Subirada, P.V., Paz, M.C., Lorenc, V.E., Stupirski, J.C., Gramajo, A.L., Luna, J.D.,..., Sánchez, M.C. (2017) . Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget, 8(20), 32505-32522.
http://dx.doi.org/10.18632/oncotarget.17129
---------- CHICAGO ----------
Ridano, M.E., Subirada, P.V., Paz, M.C., Lorenc, V.E., Stupirski, J.C., Gramajo, A.L., et al. "Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF" . Oncotarget 8, no. 20 (2017) : 32505-32522.
http://dx.doi.org/10.18632/oncotarget.17129
---------- MLA ----------
Ridano, M.E., Subirada, P.V., Paz, M.C., Lorenc, V.E., Stupirski, J.C., Gramajo, A.L., et al. "Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF" . Oncotarget, vol. 8, no. 20, 2017, pp. 32505-32522.
http://dx.doi.org/10.18632/oncotarget.17129
---------- VANCOUVER ----------
Ridano, M.E., Subirada, P.V., Paz, M.C., Lorenc, V.E., Stupirski, J.C., Gramajo, A.L., et al. Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget. 2017;8(20):32505-32522.
http://dx.doi.org/10.18632/oncotarget.17129