Artículo

Azcárate, J.C.; Díaz, S.A.; Fauerbach, J.A.; Gillanders, F.; Rubert, A.A.; Jares-Erijman, E.A.; Jovin, T.M.; Fonticelli, M.H. "ESIPT and FRET probes for monitoring nanoparticle polymer coating stability" (2017) Nanoscale. 9(25):8647-8656
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Coating strategies of inorganic nanoparticles (NPs) can provide properties unavailable to the NP core alone, such as targeting, specific sensing, and increased biocompatibility. Non-covalent amphiphilic NP capping polymers function via hydrophobic interactions with surface ligands and are extensively used to transfer NPs to aqueous media. For applications of coated NPs as actuators (sensors, markers, or for drug delivery) in a complex environment, such as biological systems, it is important to achieve a deep understanding of the factors affecting coating stability and behavior. We have designed a system that tests the coating stability of amphiphilic polymers through a simple fluorescent readout using either polarity sensing ESIPT (excited state intramolecular proton transfer) dyes or NP FRET (Förster resonance energy transfer). The stability of the coating was determined in response to changes in polarity, pH and ionic strength in the medium. Using the ESIPT system we observed linear changes in signal up to ∼20-25% v/v of co-solvent addition, constituting a break point. Based on such data, we propose a model for coating instability and the important adjustable parameters, such as the electrical charge distribution. FRET data provided confirmatory evidence for the model. The ESIPT dyes and FRET based methods represent new, simple tools for testing NP coating stability in complex environments. © 2017 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:ESIPT and FRET probes for monitoring nanoparticle polymer coating stability
Autor:Azcárate, J.C.; Díaz, S.A.; Fauerbach, J.A.; Gillanders, F.; Rubert, A.A.; Jares-Erijman, E.A.; Jovin, T.M.; Fonticelli, M.H.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET Sucursal 4, Casilla de Correo 16, La Plata, 1900, Argentina
Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
Miltenyi Biotec GmbH, Friedrich-Ebert Str. 68, Bergisch-Gladbach, 51429, Germany
Laboratorio de Investigación y Desarrollo, Akapol S.A., Buenos Aires, Argentina
Palabras clave:Biocompatibility; Coatings; Energy transfer; Excited states; Hydrophobicity; Ionic strength; Nanoparticles; Polymers; Stability; System stability; Adjustable parameters; Amphiphilic polymers; Coating instability; Complex environments; Excited-state intramolecular proton transfer; Hydrophobic interactions; Inorganic nanoparticle; Resonance energy transfer; Plastic coatings
Año:2017
Volumen:9
Número:25
Página de inicio:8647
Página de fin:8656
DOI: http://dx.doi.org/10.1039/c7nr01787a
Título revista:Nanoscale
Título revista abreviado:Nanoscale
ISSN:20403364
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_20403364_v9_n25_p8647_Azcarate

Referencias:

  • Sperling, R.A., Parak, W.J., (2010) Philos. Trans. R. Soc., A, 368, pp. 1333-1383
  • Ali, Z., Abbasi, A.Z., Zhang, F., Arosio, P., Lascialfari, A., Casula, M.F., Wenk, A., Parak, W.J., (2011) Anal. Chem., 83, pp. 2877-2882
  • Soliman, M.G., Pelaz, B., Parak, W.J., Del Pino, P., (2015) Chem. Mater., 27, pp. 990-997
  • Jańczewski, D., Tomczak, N., Han, M.-Y., Vancso, G.J., (2011) Nat. Protoc., 6, pp. 1546-1553
  • Díaz, S.A., Gillanders, F., Susumu, K., Oh, E., Medintz, I.L., Jovin, T.M., (2017) Chem.-Eur. J., 23, pp. 263-267
  • Palui, G., Aldeek, F., Wang, W., Mattoussi, H., (2014) Chem. Soc. Rev., 44, pp. 193-227
  • Zhan, N., Palui, G., Mattoussi, H., (2015) Nat. Protoc., 10, pp. 859-874
  • Charron, G., Hühn, D., Perrier, A., Cordier, L., Pickett, C.J., Nann, T., Parak, W.J., (2012) Langmuir, 28, pp. 15141-15149
  • Zhang, F., Lees, E., Amin, F., Rivera-Gil, P., Yang, F., Mulvaney, P., Parak, W.J., (2011) Small, 7, pp. 3113-3127
  • Kreyling, W.G., Abdelmonem, A.M., Ali, Z., Alves, F., Geiser, M., Haberl, N., Hartmann, R., Parak, W.J., (2015) Nat. Nanotechnol., 10, pp. 619-623
  • Hoskins, C., Thoo-Lin, P.K., Cheng, W.P., (2012) Ther. Delivery, 3, pp. 59-79
  • Pellegrino, T., Manna, L., Kudera, S., Liedl, T., Koktysh, D., Rogach, A.L., Keller, S., Parak, W.J., (2004) Nano Lett., 4, pp. 703-707
  • Jańczewski, D., Tomczak, N., Khin, Y.W., Han, M.-Y., Julius Vancso, G., (2009) Eur. Polym. J., 45, pp. 3-9
  • Fauerbach, J.A., Yushchenko, D.A., Shahmoradian, S.H., Chiu, W., Jovin, T.M., Jares-Erijman, E.A., (2012) Biophys. J., 102, pp. 1127-1136
  • Yushchenko, D.A., Fauerbach, J.A., Thirunavukkuarasu, S., Jares-Erijman, E.A., Jovin, T.M., (2010) J. Am. Chem. Soc., 132, pp. 7860-7861
  • Amin, F., Yushchenko, D.A., Montenegro, J.M., Parak, W.J., (2012) ChemPhysChem, 13, pp. 1030-1035
  • Álvarez, Y.D., Fauerbach, J.A., Pellegrotti, J.V., Jovin, T.M., Jares-Erijman, E.A., Stefani, F.D., (2013) Nano Lett., 13, pp. 6156-6163
  • Oliveira, E.M.N., Coelho, F.L., Zanini, M.L., Papaléo, R.M., Campo, L.F., (2016) ChemPhysChem, 98, pp. 1257-1261
  • Medintz, I., Hildebrandt, N., (2013) FRET - Förster Resonance Energy Transfer: From Theory to Applications, , John Wiley & Sons
  • Díaz, S.A., Menéndez, G.O., Etchehon, M.H., Giordano, L., Jovin, T.M., Jares-Erijman, E.A., (2011) ACS Nano, 5, pp. 2795-2805
  • Díaz, S.A., Giordano, L., Jovin, T.M., Jares-Erijman, E.A., (2012) Nano Lett., 12, pp. 3537-3544
  • Hostetler, M.J., Wingate, J.E., Zhong, C.-J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Murray, R.W., (1998) Langmuir, 14, pp. 17-30
  • Fernandez-Argüelles, M.T., Yakovlev, A., Sperling, R.A., Luccardini, C., Gaillard, S., Medel, A.S., Mallet, J.-M., Sanz Medel, A., (2007) Nano Lett., 7, pp. 2613-2617
  • Hühn, J., Carrillo-Carrion, C., Soliman, M.G., Pfeiffer, C., Valdeperez, D., Masood, A., Chakraborty, I., Parak, W.J., (2017) Chem. Mater., 29, pp. 399-461
  • Del Pino, P., Yang, F., Pelaz, B., Zhang, Q., Kantner, K., Hartmann, R., Martinez De Baroja, N., Parak, W.J., (2016) Angew. Chem., Int. Ed., 55, pp. 5483-5487
  • Zamotaiev, O.M., Postupalenko, V.Y., Shvadchak, V.V., Pivovarenko, V.G., Klymchenko, A.S., Mély, Y., (2011) Bioconjugate Chem., 22, pp. 101-107
  • Shvadchak, V.V., Falomir-Lockhart, L.J., Yushchenko, D.A., Jovin, T.M., (2011) J. Biol. Chem., 286, pp. 13023-13032
  • Klymchenko, A.S., Demchenko, A.P., (2004) New J. Chem., 28, p. 687
  • Caarls, W., Soledad Celej, M., Demchenko, A.P., Jovin, T.M., (2010) J. Fluoresc., 20, pp. 181-190
  • Das, R., Duportail, G., Richert, L., Klymchenko, A., Mély, Y., (2012) Langmuir, 28, pp. 7147-7159
  • Shynkar, V.V., Klymchenko, A.S., Piémont, E., Demchenko, A.P., Mély, Y., (2004) J. Phys. Chem. A, 108, pp. 8151-8159
  • Klymchenko, A.S., Duportail, G., Demchenko, A.P., Mély, Y., (2004) Biophys. J., 86, pp. 2929-2941
  • Postupalenko, V.Y., Shvadchak, V.V., Duportail, G., Pivovarenko, V.G., Klymchenko, A.S., Mély, Y., (2011) Biochim. Biophys. Acta, Biomembr., 1808, pp. 424-432
  • Klymchenko, A.S., Duportail, G., Ozturk, T., Pivovarenko, V.G., Mély, Y., Demchenko, A.P., (2002) Chem. Biol., 9, pp. 1199-1208
  • Klymchenko, A.S., Pivovarenko, V.G., Demchenko, A.P., (2003) J. Phys. Chem. A, 107, pp. 4211-4216
  • Klymchenko, A.S., Demchenko, A.P., (2002) J. Am. Chem. Soc., 124, pp. 12372-12379
  • Díaz, S.A., Gillanders, F., Jares-Erijman, E.A., Jovin, T.M., (2015) Nat. Commun., 6, p. 6036
  • Hildebrandt, N., Spillmann, C.M., Algar, W.R., Pons, T., Stewart, M.H., Oh, E., Susumu, K., Medintz, I.L., (2017) Chem. Rev., 117, pp. 536-711
  • Sheppard, S.E., Newsome, P.T., Brigham, H.R., (1942) J. Am. Chem. Soc., 64, pp. 2923-2937
  • Jares-Erijman, E.A., Jovin, T.M., (2003) Nat. Biotechnol., 21, pp. 1387-1395
  • M'Baye, G., Klymchenko, A.S., Yushchenko, D.A., Shvadchak, V.V., Ozturk, T., Mély, Y., Duportail, G., (2007) Photochem. Photobiol. Sci., 6, pp. 71-76
  • Demchenko, A.P., Mély, Y., Duportail, G., Klymchenko, A.S., (2009) Biophys. J., 96, pp. 3461-3470
  • Buchner, R., Baar, C., Fernandez, P., Schrödle, S., Kunz, W., (2005) J. Mol. Liq., 118, pp. 179-187
  • Smith, A.M., Johnston, K.A., Crawford, S.E., Marbella, L.E., Millstone, J.E., (2017) Analyst, 142, pp. 11-29
  • Nag, O.K., Naciri, J., Oh, E., Spillmann, C.M., Delehanty, J.B., (2016) Bioconjugate Chem., 27, pp. 982-993

Citas:

---------- APA ----------
Azcárate, J.C., Díaz, S.A., Fauerbach, J.A., Gillanders, F., Rubert, A.A., Jares-Erijman, E.A., Jovin, T.M.,..., Fonticelli, M.H. (2017) . ESIPT and FRET probes for monitoring nanoparticle polymer coating stability. Nanoscale, 9(25), 8647-8656.
http://dx.doi.org/10.1039/c7nr01787a
---------- CHICAGO ----------
Azcárate, J.C., Díaz, S.A., Fauerbach, J.A., Gillanders, F., Rubert, A.A., Jares-Erijman, E.A., et al. "ESIPT and FRET probes for monitoring nanoparticle polymer coating stability" . Nanoscale 9, no. 25 (2017) : 8647-8656.
http://dx.doi.org/10.1039/c7nr01787a
---------- MLA ----------
Azcárate, J.C., Díaz, S.A., Fauerbach, J.A., Gillanders, F., Rubert, A.A., Jares-Erijman, E.A., et al. "ESIPT and FRET probes for monitoring nanoparticle polymer coating stability" . Nanoscale, vol. 9, no. 25, 2017, pp. 8647-8656.
http://dx.doi.org/10.1039/c7nr01787a
---------- VANCOUVER ----------
Azcárate, J.C., Díaz, S.A., Fauerbach, J.A., Gillanders, F., Rubert, A.A., Jares-Erijman, E.A., et al. ESIPT and FRET probes for monitoring nanoparticle polymer coating stability. Nanoscale. 2017;9(25):8647-8656.
http://dx.doi.org/10.1039/c7nr01787a