Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We propose a novel structure that behaves like an optical antenna and converts evanescent waves into propagating waves. The system comprises metallic subwavelength cylinders distributed in a dual-period array. It is illuminated by an evanescent wave generated by total internal reflection in a close interface. For particular wavelengths, the system exhibits resonances and the inhomogeneous wave is converted into propagating waves that radiate to the far field. This effect can be controlled by varying the geometrical parameters of the structure, such as the period and the inclination angle. Therefore, the transmitted intensity can be sent to a predesigned direction. This structure could be used in highly sensitive detection devices, among other applications. © 2011 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:An optical nanoantenna made of plasmonic chain resonators
Autor:Lester, M.; Skigin, D.C.
Filiación:Grupo Optica de Sólidos-Elfo, Instituto de Física Arroyo Seco, Universidad Nacional Del Centro de la Provincia de Buenos Aires, Pinto 399 (cp 7000), Buenos Aires, Argentina
Grupo de Electromagnetismo Aplicado, Departamento de Física, IFIBA (CONICET) Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
Palabras clave:diffraction and scattering; subwavelength structures; surface plasmons; Diffraction and scattering; Evanescent wave; Far field; Geometrical parameters; Highly sensitive; Inclination angles; Inhomogeneous waves; Nanoantennas; Novel structures; Optical antennas; Other applications; Plasmonic; Sub-wavelength; Sub-wavelength structures; surface plasmons; Total internal reflections; Transmitted intensities; Cylinders (shapes); Diffraction; Electromagnetic wave reflection; Reactive ion etching; Refractive index; Wave transmission; Plasmons
Año:2011
Volumen:13
Número:3
DOI: http://dx.doi.org/10.1088/2040-8978/13/3/035105
Título revista:Journal of Optics
Título revista abreviado:J. Opt.
ISSN:20408978
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20408978_v13_n3_p_Lester

Referencias:

  • Greffet, J.-J., Nanoantennas for light emission (2005) Science, 308 (5728), pp. 1561-1563. , DOI 10.1126/science.1113355
  • Pakizeh, T., Kall, M., Unidirectional ultracompact optical nanoantennas (2009) Nano Lett., 9 (6), pp. 2343-2349
  • Novotny, L., Nano-optics: Optical antennas tuned to pitch (2008) Nature, 455 (7215), p. 887
  • Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., Optical antennas direct single-molecule emission (2008) Nat. Photon., 2 (4), pp. 234-237
  • Novotny, L., Hecht, B., (2006) Principles of Nano-Optics
  • Girard, Ch., Joachim, Ch., Gauthier, S., The physics of the near-field (2000) Rep. Prog. Phys., 63 (6), pp. 893-938
  • Girard, Ch., Near fields in nanostructures (2005) Rep. Prog. Phys., 68 (8), pp. 1883-1933
  • Salerno, M., Krenn, J.R., Hohenau, A., Ditlbacher, H., Schider, G., Leitner, A., Aussenegg, F.R., The optical near-field of gold nanoparticle chains (2005) Optics Communications, 248 (4-6), pp. 543-549. , DOI 10.1016/j.optcom.2004.12.023, PII S0030401804012994
  • Righini, M., Girard, C., Quidant, R., Light-induced manipulation with surface plasmons (2008) J. Opt. A: Pure Appl. Opt., 10 (9), p. 093001
  • Quidant, R., Weeber, J.-C., Dereux, A., Peyrade, D., Chen, Y., Girard, C., Near-field observation of evanescent light wave coupling in subwavelength optical waveguides (2002) Europhys. Lett., 57 (2), p. 191
  • Des Francs, G.C., Girard, C., Weeber, J.-C., Chicane, C., David, T., Dereux, A., Peyrade, D., Optical analogy to electronic quantum corrals (2001) Physical Review Letters, 86 (21), pp. 4950-4953. , DOI 10.1103/PhysRevLett.86.4950
  • Zhang, Z., Du, J., Guo, X., Luo, X., Du, C., High-efficiency transmission of nanoscale information by surface plasmon polaritons from near field to far field (2007) J. Appl. Phys., 102 (7), p. 074301
  • Lester, M., Nieto-Vesperinas, M., Optical forces on microparticles in an evanescent laser field (1999) Optics Letters, 24 (14), pp. 936-938
  • Lester, M., Arias-Gonzalez, J.R., Nieto-Vesperinas, M., Fundamentals and model of photonic-force microscopy (2001) Optics Letters, 26 (10), pp. 707-709
  • Mulin, D., Girard, C., Colas Des Francs, G., Spajer, M., Courjon, D., Near-field optical probing of two-dimensional photonic crystals: Theory and experiment (2000) J. Microsc., 202 (1), pp. 110-116
  • Fang, N., Lee, H., Sun, C., Zhang, X., Sub-diffraction-limited optical imaging with a silver superlens (2005) Science, 308 (5721), pp. 534-537. , DOI 10.1126/science.1108759
  • Tetz, K.A., Rokitski, R., Nezhad, M., Fainman, Y., Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating (2005) Appl. Phys. Lett., 86 (11), p. 111110
  • Dintinger, J., Klein, S., Bustos, F., Barnes, W.L., Ebbesen, T.W., Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays (2005) Phys. Rev., 71 (3), p. 035424
  • Byun, K.M., Kim, S.J., Kim, D., Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis (2005) Optics Express, 13 (10), pp. 3737-3742. , http://www.opticsexpress.org/view_file.cfm?doc= %24%29L%2F%28I%40%20%20%0A&id=%25%28%2C%3F%27J%3C%3C%20%0A, DOI 10.1364/OPEX.13.003737
  • Rogers, A.A., Samson, S., Kedia, S., Far-field evanescent wave propagation using coupled subwavelength gratings for a MEMS sensor (2009) J. Opt. Soc. Am., 26 (12), pp. 2526-2531
  • Cheben, P., Xu, D.-X., Janz, S., Densmore, A., Subwavelength waveguide grating for mode conversion and light coupling in integrated optics (2006) Optics Express, 14 (11), pp. 4695-4702. , http://www.opticsexpress.org/ViewMedia.cfm?id=90061&seq=0, DOI 10.1364/OE.14.004695
  • Lester, M., Skigin, D.C., Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays (2007) Journal of Optics A: Pure and Applied Optics, 9 (1), pp. 81-87. , DOI 10.1088/1464-4258/9/1/014, PII S1464425807319223, 014
  • Nikitin, A.Y., García-Vidal, F.J., Martín-Moreno, L., Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes (2009) J. Opt. A: Pure Appl. Opt., 11 (12), p. 125702
  • Nikitin, A.Y., García-Vidal, F.J., Martín-Moreno, L., Intercoupling of free space radiation to s-polarized confined modes via nanocavities (2009) Appl. Phys. Lett., 94 (6), p. 063119
  • Krishnan, A., Thio, T., Kim, T.J., Lezec, H.J., Ebbesen, T.W., Wolff, P.A., Pendry, J., Garcia-Vidal, F.J., Evanescently coupled resonance in surface plasmon enhanced transmission (2001) Optics Communications, 200 (1-6), pp. 1-7. , DOI 10.1016/S0030-4018(01)01558-9, PII S0030401801015589
  • Vohnsen, B., Bozhevolnyi, S.I., Coupling of surface-plasmon polaritons to directional far-field radiation by and individual surface protrusion (2001) Appl. Opt., 40 (33), pp. 6081-6085
  • Park, S., Lee, G., Song, S.H., Oh, C.H., Kim, P.S., Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings (2003) Opt. Lett., 28 (20), pp. 1870-1872
  • Lester, M., Skigin, D.C., Depine, R.A., Blaze produced by a dual-period array of subwavelength cylinders (2009) J. Opt. A: Pure Appl. Opt., 11 (4), p. 045705
  • Tan, W.-C., Sambles, J.R., Preist, T.W., Double-period zero-order metal gratings as effective selective absorbers (2000) Phys. Rev., 61 (19), pp. 13177-13182
  • Hibbins, A., Sambles, J.R., Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating (2002) Appl. Phys. Lett., 80 (13), pp. 2410-2412
  • Lockyear, M.J., Hibbins, A.P., Sambles, J.R., Lawrence, C.R., Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating (2005) Appl. Phys. Lett., 86 (18), p. 184103
  • Lepage, J.-F., McCarthy, N., Analysis of the diffractional properties of dual-period apodizing gratings: Theoretical and experimental results (2004) Appl. Opt., 43 (17), pp. 3504-3512
  • Crouse, D., Keshavareddy, P., A method for designing electromagnetic resonance enhanced silicon-on-insulator metalsemiconductormetal photodetectors (2006) J. Opt. A: Pure Appl. Opt., 8, p. 175181
  • Skigin, D.C., Depine, R.A., Transmission resonances in metallic compound gratings with subwavelength slits (2005) Phys. Rev. Lett., 95 (21), p. 217402. , http://www.vjnano.org/nano/
  • Skigin, D.C., Depine, R.A., Narrow gaps for transmission through metallic structures gratings with subwavelength slits (2006) Phys. Rev., 74 (4), p. 046606
  • Skigin, D.C., Loui, H., Popovic, Z., Kuester, E., Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits (2007) Phys. Rev., 76 (1), p. 016604
  • Navarro-Cía, M., Skigin, D.C., Beruete, M., Sorolla, M., Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime (2009) Appl. Phys. Lett., 94 (9), p. 091107
  • Beruete, M., Navarro-Cía, M., Skigin, D.C., Sorolla, M., Millimeter-wave phase resonances in compound reflection gratings with subwavelength grooves (2010) Opt. Express, 18 (23), pp. 23957-23964
  • Skigin, D.C., Depine, R.A., Diffraction by dual-period gratings (2007) Applied Optics, 46 (9), pp. 1385-1391. , DOI 10.1364/AO.46.001385
  • Lester, M., Skigin, D.C., Depine, R.A., Control of the diffracted response of wire arrays with double period (2008) Appl. Opt., 47 (11), pp. 1711-1717
  • Madrazo, A., Nieto-Vesperinas, M., Scattering of electromagnetic waves from a cylinder in front of a conducting plane (1995) J. Opt. Soc. Am., 12 (6), pp. 1298-1302
  • Madrazo, A., Nieto-Vesperinas, M., Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: Theory for the reflection photon scanning tunneling microscope (1996) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 13 (4), pp. 785-795
  • Arias-Gonzlez, J.R., Nieto-Vesperinas, M., Near-field distributions of resonant modes in small dielectric objects on flat surfaces (2000) Opt. Lett., 25 (11), pp. 782-784
  • Arias-Gonzlez, J.R., Nieto-Vesperinas, M., Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation (2001) J. Opt. Soc. Am., 18 (3), pp. 657-665
  • Ghenuche, P., Quidant, R., Badenes, G., Cumulative plasmon field enhancement in finite metal particle chains (2005) Optics Letters, 30 (14), pp. 1882-1884
  • Kottmann, J.P., Martin, O.J.F., Plasmon resonant coupling in metallic nanowires (2001) Opt. Express, 8 (12), pp. 655-663
  • Koenderink, F., Polman, A., Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains (2006) Phys. Rev., 74 (3), p. 033402
  • Scaffardi, L.B., Lester, M., Skigin, D.C., Tocho, J.O., Optical extinction spectroscopy used to characterize metallic nanowires (2007) Nanotechnology, 18 (31), p. 315402
  • Petit, R., (1980) Electromagnetic Theory of Gratings

Citas:

---------- APA ----------
Lester, M. & Skigin, D.C. (2011) . An optical nanoantenna made of plasmonic chain resonators. Journal of Optics, 13(3).
http://dx.doi.org/10.1088/2040-8978/13/3/035105
---------- CHICAGO ----------
Lester, M., Skigin, D.C. "An optical nanoantenna made of plasmonic chain resonators" . Journal of Optics 13, no. 3 (2011).
http://dx.doi.org/10.1088/2040-8978/13/3/035105
---------- MLA ----------
Lester, M., Skigin, D.C. "An optical nanoantenna made of plasmonic chain resonators" . Journal of Optics, vol. 13, no. 3, 2011.
http://dx.doi.org/10.1088/2040-8978/13/3/035105
---------- VANCOUVER ----------
Lester, M., Skigin, D.C. An optical nanoantenna made of plasmonic chain resonators. J. Opt. 2011;13(3).
http://dx.doi.org/10.1088/2040-8978/13/3/035105