Artículo

Cerisola, F.; Margalit, Y.; MacHluf, S.; Roncaglia, A.J.; Paz, J.P.; Folman, R. "Using a quantum work meter to test non-equilibrium fluctuation theorems" (2017) Nature Communications. 8(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Work is an essential concept in classical thermodynamics, and in the quantum regime, where the notion of a trajectory is not available, its definition is not trivial. For driven (but otherwise isolated) quantum systems, work can be defined as a random variable, associated with the change in the internal energy. The probability for the different values of work captures essential information describing the behaviour of the system, both in and out of thermal equilibrium. In fact, the work probability distribution is at the core of "fluctuation theorems" in quantum thermodynamics. Here we present the design and implementation of a quantum work meter operating on an ensemble of cold atoms, which are controlled by an atom chip. Our device not only directly measures work but also directly samples its probability distribution. We demonstrate the operation of this new tool and use it to verify the validity of the quantum Jarzynksi identity. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Using a quantum work meter to test non-equilibrium fluctuation theorems
Autor:Cerisola, F.; Margalit, Y.; MacHluf, S.; Roncaglia, A.J.; Paz, J.P.; Folman, R.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto de Física de Buenos Aires, CONICET-UBA, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, Amsterdam, 1090 GL, Netherlands
Palabras clave:equilibrium; probability; quantum mechanics; thermodynamics; cold stress; identity; probability; thermodynamics; validity
Año:2017
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41467-017-01308-7
Título revista:Nature Communications
Título revista abreviado:Nat. Commun.
ISSN:20411723
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v8_n1_p_Cerisola

Referencias:

  • Jarzynski, C., Nonequilibrium equality for free energy differences (1997) Phys. Rev. Lett., 78, pp. 2690-2693
  • Crooks, G.E., Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences (1999) Phys. Rev. E, 60, pp. 2721-2726
  • Hummer, G., Szabo, A., Free energy reconstruction from nonequilibrium single-molecule pulling experiments (2001) Proc. Natl Acad. Sci. USA, 98, pp. 3658-3661
  • Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C., Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality (2002) Science, 296, pp. 1832-1835
  • Collin, D., Verification of the crooks fluctuation theorem and recovery of RNA folding free energies (2005) Nature., 437, pp. 231-234
  • Esposito, M., Harbola, U., Mukamel, S., Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems (2009) Rev. Mod. Phys., 81, pp. 1665-1702
  • Campisi, M., Hänggi, P., Talkner, P., Colloquium: Quantum fluctuation relations: Foundations and applications (2011) Rev. Mod. Phys., 83, pp. 771-791
  • Seifert, U., Stochastic thermodynamics, fluctuation theorems and molecular machines (2012) Rep. Progress Phys., 75, p. 126001
  • Goold, J., Huber, M., Riera, A., Del Rio, L., Skrzypczyk, P., The role of quantum information in thermodynamics - A topical review (2016) J. Phys. A Math. Theor., 49, p. 143001
  • Talkner, P., Lutz, E., Hänggi, P., Fluctuation theorems: Work is not an observable (2007) Phys. Rev. E, 75, p. 050102
  • Huber, G., Schmidt-Kaler, F., Deffner, S., Lutz, E., Employing trapped cold ions to verify the quantum jarzynski equality (2008) Phys. Rev. Lett., 101, p. 070403
  • Watanabe, G., Venkatesh, B.P., Talkner, P., Generalized energy measurements and modified transient quantum fluctuation theorems (2014) Phys. Rev. E, 89, p. 052116
  • An, S., Experimental test of the quantum jarzynski equality with a trappedion system (2015) Nat. Phy., 11, pp. 193-199
  • Mazzola, L., De Chiara, G., Paternostro, M., Measuring the characteristic function of the work distribution (2013) Phys. Rev. Lett., 110, p. 230602
  • Dorner, R., Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry (2013) Phys. Rev. Lett., 110, p. 230601
  • Batalhão, T.B., Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system (2014) Phys. Rev. Lett., 113, p. 140601
  • Roncaglia, A.J., Cerisola, F., Paz, J.P., Work measurement as a generalized quantum measurement (2014) Phys. Rev. Lett., 113, p. 250601
  • Machluf, S., Japha, Y., Folman, R., Coherent stern-gerlach momentum splitting on an atom chip (2013) Nat. Commun., 4, p. 2424
  • Tasaki, H., (2000) Jarzynski Relations for Quantum Systems and Some Applications, , https://arxiv.org/abs/cond-mat/0009244, Preprint at
  • Kurchan, J., (2000) A Quantum Fluctuation Theorem, , https://arxiv.org/abs/cond-mat/0007360, Preprint at
  • Mukamel, S., Quantum extension of the jarzynski relation: Analogy with stochastic dephasing (2003) Phys. Rev. Lett., 90, p. 170604
  • De Chiara, G., Roncaglia, A.J., Paz, J.P., Measuring work and heat in ultracold quantum gases (2015) New. J. Phys., 17, p. 035004
  • Talkner, P., Hänggi, P., Aspects of quantum work (2016) Phys. Rev. E, 93, p. 022131
  • Solinas, S., Miller, H.J.D., Anders, J., (2017) Measurement-dependent Corrections to Work Distributions Arising from Quantum Coherences, , https://arxiv.org/abs/1705.10296, Preprint at
  • Keil, M., Fifteen years of cold matter on the atom chip: Promise, realizations, and prospects (2016) J. Mod. Opt., 63, pp. 1840-1885
  • Margalit, Y., A self-interfering clock as a "which path" witness (2015) Science, 349, pp. 1205-1208
  • Solinas, P., Gasparinetti, S., Full distribution of work done on a quantum system for arbitrary initial states (2015) Phys. Rev. E, 92, p. 042150
  • Kammerlander, P., Anders, J., Coherence and measurement in quantum thermodynamics (2016) Sci. Rep., 6, p. 22174
  • Perarnau-Llobet, M., Bäumer, E., Hovhannisyan, K.V., Huber, M., Acin, A., No-go theorem for the characterization of work fluctuations in coherent quantum systems (2017) Phys. Rev. Lett., 118, p. 070601
  • Sampaio, R., Suomela, S., Ala-Nissila, T., Anders, J., Philbin, T.G., (2017) The Impossible Quantum Work Distribution, , https://arxiv.org/abs/1707.06159, Preprint at

Citas:

---------- APA ----------
Cerisola, F., Margalit, Y., MacHluf, S., Roncaglia, A.J., Paz, J.P. & Folman, R. (2017) . Using a quantum work meter to test non-equilibrium fluctuation theorems. Nature Communications, 8(1).
http://dx.doi.org/10.1038/s41467-017-01308-7
---------- CHICAGO ----------
Cerisola, F., Margalit, Y., MacHluf, S., Roncaglia, A.J., Paz, J.P., Folman, R. "Using a quantum work meter to test non-equilibrium fluctuation theorems" . Nature Communications 8, no. 1 (2017).
http://dx.doi.org/10.1038/s41467-017-01308-7
---------- MLA ----------
Cerisola, F., Margalit, Y., MacHluf, S., Roncaglia, A.J., Paz, J.P., Folman, R. "Using a quantum work meter to test non-equilibrium fluctuation theorems" . Nature Communications, vol. 8, no. 1, 2017.
http://dx.doi.org/10.1038/s41467-017-01308-7
---------- VANCOUVER ----------
Cerisola, F., Margalit, Y., MacHluf, S., Roncaglia, A.J., Paz, J.P., Folman, R. Using a quantum work meter to test non-equilibrium fluctuation theorems. Nat. Commun. 2017;8(1).
http://dx.doi.org/10.1038/s41467-017-01308-7