Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It is well known that cold environments are predominant over the Earth and there are a great number of reports analyzing bacterial adaptations to cold. Most of these works are focused on characteristics traditionally involved in cold adaptation, such as the structural adjustment of enzymes, maintenance of membrane fluidity, expression of cold shock proteins and presence of compatible solutes. Recent works based mainly on novel “omic” technologies have presented evidence of the presence of other important features to thrive in cold. In this work, we analyze cold-adapted bacteria, looking for strategies involving novel features, and/or activation of non-classical metabolisms for a cold lifestyle. Metabolic traits related to energy generation, compounds and mechanisms involved in stress resistance and cold adaptation, as well as characteristics of the cell envelope, are analyzed in heterotrophic cold-adapted bacteria. In addition, metagenomic, metatranscriptomic and metaproteomic data are used to detect key functions in bacterial communities inhabiting cold environments. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.

Registro:

Documento: Artículo
Título:Reporting key features in cold-adapted bacteria
Autor:Tribelli, P.M.; López, N.I.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
IQUIBICEN, CONICET, Buenos Aires, C1428EGA, Argentina
Palabras clave:Cell envelopes; Cold-adapted bacterial communities; Energy generation; Polyhydroxyalkanoates; Psychrophile
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.3390/life8010008
Título revista:Life
Título revista abreviado:Life
ISSN:20751729
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20751729_v8_n1_p_Tribelli

Referencias:

  • Chattopadhyay, M.K., Raghu, G., Sharma, Y.V.R.K., Biju, A.R., Rajasekharan, M.V., Shivaji, S., Increase in oxidative stress at low temperature in an Antarctic bacterium (2011) Curr. Microbiol, 62, pp. 544-546
  • Rodrigues, D.F., Tiedje, J.M., Coping with our cold planet. Appl. Environ (2008) Microbiol, 74, pp. 1677-1686
  • Barria, C., Malecki, M., Arraiano, C.M., Bacterial adaptation to cold (2013) Microbiology, 159, pp. 2437-2443
  • De Maayer, P., Anderson, D., Cary, C., Cowan, D.A., Some like it cold: Understanding the survival strategies of psychrophiles (2014) EMBO Rep, 15, pp. 508-517
  • Maccario, L., Sanguino, L., Vogel, T.M., Larose, C., Snow and ice ecosystems: Not so extreme (2015) Microbiol, 166, pp. 782-795
  • Cavicchioli, R., On the concept of a psychrophile (2016) ISME J, 10, pp. 793-795
  • Morita, R.Y., Psychrophilic bacteria (1975) Bacteriol. Rev, 39, pp. 144-167
  • Atlas, R.M., Bartha, R., (1998) Microbial Ecology: Fundamentals and Applications, pp. 1-704. , 4th ed.; Benjamin/Cummings Science Publishers: Menlo Park, CA, USA
  • Feller, G., Gerday, C., Psychrophilic enzymes: Hot topics in cold adaptation (2003) Nat. Rev. Microbiol, 1, pp. 200-208
  • Rodrigues, D.F., Ivanova, N., He, Z., Huebner, M., Zhou, J., Tiedje, J.M., Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: A genome and transcriptome approach (2008) BMC Genom, p. 9
  • Aliyu, H., De Maayer, P., Cowan, D., The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions (2016) FEMS Microbiol. Ecol, p. 92
  • Raymond-Bouchard, I., Chourey, K., Altshuler, I., Iyer, R., Hettich, R.L., Whyte, L.G., Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis (2017) Environ. Microbiol, 19, pp. 4460-4479
  • Mykytczuk, N.C.S., Foote, S.J., Omelon, C.R., Southam, G., Greer, C.W., Whyte, L.G., Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1 (2013) ISME J, 7, pp. 1211-1226
  • Ronholm, J., Raymond-Bouchard, I., Creskey, M., Cyr, T., Cloutis, E.A., Whyte, L.G., Characterizing the surface-exposed proteome of Planococcus halocryophilus during cryophilic growth (2015) Extremophiles, 19, pp. 619-629
  • Piette, F., D’Amico, S., Mazzucchelli, G., Danchin, A., Leprince, P., Feller, G., Life in the cold: A proteomic study of cold-repressed proteins in the antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (2011) Appl. Environ. Microbiol, 77, pp. 3881-3883
  • Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Iustman, L.J.R., Molin, S., López, N.I., Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium Pseudomonas extremaustralis (2015) Plos ONE, 10
  • Ayala-Del-Río, H., Chain, P.S., Grzymski, J.J., Ponder, M.A., Ivanova, N., Bergholz, P.W., Di Bartolo, G., Bakermans, C., The genome sequence of Psychrobacter arcticus 273-4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth (2010) Appl. Environ. Microbiol, 76, pp. 2304-2312
  • Ting, L., Williams, T.J., Cowley, M.J., Lauro, F.M., Guilhaus, M., Raftery, M.J., Cavicchioli, R., Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ (2010) Microbiol, 12, pp. 2658-2676
  • Piette, F., Leprince, P., Feller, G., Is there a cold shock response in the Antarctic psychrophile Pseudoalteromonas haloplanktis? (2012) Extremophiles, 16, pp. 681-683
  • Koh, H.Y., Park, H., Lee, J.H., Han, S.J., Sohn, Y.C., Lee, S.G., Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures (2017) Environ. Microbiol, 19, pp. 628-644
  • Fonseca, P., Moreno, R., Rojo, F., Growth of Pseudomonas putida at low temperature: Global transcriptomic and proteomic analyses (2011) Environ. Microbiol. Rep., 3, pp. 329-339
  • Textor, S., Wendisch, V.F., De Graaf, A.A., Müller, U., Linder, M.I., Linder, D., Buckel, W., Propionate oxidation in Escherichia coli: Evidence for operation of a methylcitrate cycle in bacteria. Arch (1997) Microbiol, 168, pp. 428-436
  • Horswill, A.R., Escalante-Semerena, J.C., Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle (1999) J. Bacteriol, 181, pp. 5615-5623
  • Regenhardt, D., Heuer, H., Heim, S., Fernandez, D.U., Strömpl, C., Moore, E.R.B., Timmis, K.N., Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440 (2002) Environ. Microbiol, 4, pp. 912-915
  • Reva, O.N., Weinel, C., Weinel, M., Böhm, K., Stjepandic, D., Hoheisel, J.D., Tümmler, B., Functional genomics of stress response in Pseudomonas putida KT2440 (2006) J. Bacteriol, 188, pp. 4079-4092
  • Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J., Catone, M.V., Solar Venero, E.C., López, N.I., Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance (2015) Extremophiles, 19, pp. 207-220
  • Methe, B.A., Nelson, K.E., Deming, J.W., Momen, B., Melamud, E., Zhang, X., Moult, J., Dodson, R.J., The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 10913-10918
  • Collins, R.E., Deming, J.W., An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H (2013) Extremophiles, 17, pp. 601-610
  • Mocali, S., Chiellini, C., Fabiani, A., Decuzzi, S., Pascale, D., Parrilli, E., Tutino, M.L., Fondi, M., Ecology of cold environments: New insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach (2017) Sci. Rep, 7, p. 839
  • Nunn, B.L., Slattery, K.V., Cameron, K.A., Timmins-Schiffman, E., Junge, K., Proteomics of Colwellia psychrerythraea at subzero temperatures—A life with limited movement, flexible membranes and vital DNA repair. Environ (2015) Microbiol, 17, pp. 2319-2335
  • Ghobakhlou, A.F., Johnston, A., Harris, L., Antoun, H., Laberge, S., Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies (2015) BMC Genom, 16, p. 383
  • López, N.I., Pettinari, M.J., Nikel, P.I., Méndez, B.S., Polyhydroxyalkanoates: Much more than biodegradable plastics (2015) Adv. Appl. Microbiol, 93, pp. 73-106
  • Matin, A., Veldhuis, C., Stegeman, V., Veenhuis, M., Selective advantage of a Spirillum sp. In a carbon-limited environment. Accumulation of poly-beta-hydroxybutyric acid and its role in starvation (1979) J. Gen. Microbiol., 112, pp. 349-355
  • López, N.I., Floccari, M.E., Steinbüchel, A., García, A.F., Méndez, B.S., Effect of poly(3-hydroxybutyrate) (PHB) content on the starvation-survival of bacteria in natural waters (1995) FEMS Microbiol. Ecol, 16, pp. 95-101
  • Handrick, R., Reinhardt, S., Jendrossek, D., Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha (2000) J. Bacteriol, 182, pp. 5916-5918
  • Kadouri, D., Jurkevitch, E., Okon, Y., Involvement of the reserve material poly- (2003) Appl. Environ. Microbiol., 69, pp. 3244-3250
  • Mezzina, M.P., Pettinari, M.J., Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins (2016) Appl. Environ. Microbiol, 82, pp. 5060-5067
  • Catone, M.V., Ruiz, J.A., Castellanos, M., Segura, D., Espin, G., López, N.I., High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes (2014) Plos ONE, 9
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66
  • Tribelli, P.M., López, N.I., Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions (2011) Extremophiles, 15, p. 541
  • Ayub, N.D., Pettinari, M.J., Méndez, B.S., López, N.I., The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island (2007) Plasmid, 58, pp. 240-248
  • Ruiz, J.A., López, N.I., Fernández, R.O., Méndez, B.S., Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms (2001) Appl. Environ. Microbiol, 67, pp. 225-230
  • Ruiz, J.A., López, N.I., Méndez, B.S., RpoS gene expression in carbon-starved cultures of the polyhydroxyalkanoateaccumulating species Pseudomonas oleovorans (2004) Curr. Microbiol, 48, pp. 396-400
  • Obruca, S., Sedlacek, P., Krzyzanek, V., Mravec, F., Hrubanova, K., Samek, O., Kucera, D., Marova, I., Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing (2016) Plos ONE, 11
  • Obruca, S., Sedlacek, P., Mravec, F., Samek, O., Marova, I., Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells (2016) Appl. Microbiol. Biotechnol, 100, pp. 1365-1376
  • Smirnova, G.V., Zakirova, O.N., Oktyabrskii, O.N., The role of antioxidant systems in the cold stress response of Escherichia coli (2001) Microbiology, 70, pp. 45-50
  • Zhang, L., Onda, K., Imai, R., Fukuda, R., Horiuchi, H., Ohta, A., Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae (2003) Biochem. Biophys. Res. Commun, 307, pp. 308-314
  • Margesin, R., Miteva, V., Diversity and ecology of psychrophilic microorganisms (2011) Res. Microbiol, 162, pp. 346-361
  • Cabiscol, E., Tamarit, J., Ros, J., Oxidative stress in bacteria and protein damage by reactive oxygen species (2000) Int. Microbiol., 3, pp. 3-8
  • Tkachenko, A.G., Pshenichnov, M.R., Nesterova, L.Y., Putrescine as a factor protecting Escherichia coli against oxidative stress (2001) Microbiology, 70, pp. 422-428
  • Zhu, X., Li, Q., Yin, C., Fang, X., Xu, X., Role of spermidine in overwintering of cyanobacteria (2015) J. Bacteriol, 197, pp. 2325-2334
  • Goh, Y.S., Tan, I., Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island (2012) Microbiol. Res, 167, pp. 211-219
  • Ciesielski, S., Górniak, D., Możejko, J., Świątecki, A., Grzesiak, J., Zdanowski, M., The diversity of bacteria isolated from Antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates (2014) Curr. Microbiol, 69, pp. 594-603
  • Luhtanen, A.M., Eronen-Rasimus, E., Kaartokallio, H., Rintala, J.M., Autio, R., Roine, E., Isolation and characterization of phage-host systems from the Baltic Sea ice (2014) Extremophiles, 18, pp. 121-130
  • Parnanen, K., Karkman, A., Virta, M., Eronen-Rasimus, E., Kaartokallio, H., Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters (2015) Extremophiles, 19, pp. 197-206
  • Médigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Duilio, A., Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125 (2005) Genome Res, 15, pp. 1325-1335
  • Bergholz, P.W., Bakermans, C., Tiedje, J.M., Psychrobacter arcticus 273-4 Uses resource efficiency and molecular motion adaptations for subzero temperature growth (2009) J. Bacteriol, 191, pp. 2340-2352
  • Kumar, G.S., Jagannadham, M.V., Ray, M.K., Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae (2002) J. Bacteriol, 184, pp. 6746-6749
  • Benforte, F.C., Colonnella, M.A., Ricardi, M.M., Venero, E.C.S., Lizarraga, L., López, N.I., Tribelli, P.M., Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis (2018) Plos ONE, 13
  • Mykytczuk, N.C.S., Lawrence, J.R., Omelon, C.R., Southam, G., Whyte, L.G., Microscopic characterization of the bacterial cell envelope of Planococcus halocryophilus Or1 during subzero growth at -15 °C (2016) Polar Biol, 39, pp. 701-712
  • Mancuso Nichols, C.A., Garon, S., Bowman, J.P., Raguénès, G., Guézennec, J., Production of exopolysaccharides by Antarctic marine bacterial isolates (2004) J. Appl. Microbiol, 96, pp. 1057-1066
  • Corsaro, M.M., Lanzetta, R., Parrilli, E., Parrilli, M., Tutino, M.L., Ummarino, S., Influence of growth temperature on lipid and phosphate contents of surface polysaccharides from the antarctic bacterium Pseudoalteromonas haloplanktis TAC 125 (2004) J. Bacteriol, 186, pp. 29-34
  • Nichols, C.M., Lardière, S.G., Bowman, J.P., Nichols, P.D., Gibson, J.A.E., Guézennec, J., Chemical characterization of exopolysaccharides from Antarctic marine bacteria (2005) Microb. Ecol, 49, pp. 578-589
  • Caruso, C., Rizzo, C., Mangano, S., Poli, A., Di Donato, P., Nicolaus, B., Di Marco, G., Lo Giudice, A., Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater (2017) Environ. Sci. Pollut. Res. Int, 25, pp. 4667-4677
  • Caruso, C., Rizzo, C., Mangano, S., Poli, A., Di Donato, P., Finore, I., Nicolaus, B., Lo Giudice, A., Production and biotechnological potential of extracellular polymeric substances from sponge-sssociated antarctic bacteria (2018) Appl. Environ. Microbiol, 84, pp. e01617-e01624
  • Varin, T., Lovejoy, C., Jungblut, A.D., Vincent, W.F., Corbeil, J., Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the high Arctic (2012) Appl. Environ. Microbiol., 78, pp. 549-559
  • Koo, H., Hakim, J.A., Fisher, P.R.E., Grueneberg, A., Andersen, D.T., Bej, A.K., Distribution of cold adaptation proteins in microbial mats in Lake Joyce, Antarctica: Analysis of metagenomic data by using two bioinformatics tools (2016) J. Microbiol. Methods, 120, pp. 23-28
  • Liljeqvist, M., Ossandon, F.J., González, C., Rajan, S., Stell, A., Valdes, J., Holmes, D.S., Dopson, M., Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream (2015) FEMS Microbiol. Ecol, p. 91
  • Mackelprang, R., Burkert, A., Haw, M., Mahendrarajah, T., Conaway, C.H., Douglas, T.A., Waldrop, M.P., Microbial survival strategies in ancient permafrost (2017) Insights from Metagenomics. ISME J., 11, pp. 2305-2318
  • Williams, T.J., Long, E., Evans, F., Demaere, M.Z., Lauro, F.M., Raftery, M.J., Ducklow, H., Cavicchioli, R., A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters (2012) ISME J, 6, pp. 1883-1900
  • Coolen, M.J.L., Orsi, W.D., The transcriptional response of microbial communities in thawing Alaskan permafrost soils (2015) Front. Microbiol, 6, p. 197

Citas:

---------- APA ----------
Tribelli, P.M. & López, N.I. (2018) . Reporting key features in cold-adapted bacteria. Life, 8(1).
http://dx.doi.org/10.3390/life8010008
---------- CHICAGO ----------
Tribelli, P.M., López, N.I. "Reporting key features in cold-adapted bacteria" . Life 8, no. 1 (2018).
http://dx.doi.org/10.3390/life8010008
---------- MLA ----------
Tribelli, P.M., López, N.I. "Reporting key features in cold-adapted bacteria" . Life, vol. 8, no. 1, 2018.
http://dx.doi.org/10.3390/life8010008
---------- VANCOUVER ----------
Tribelli, P.M., López, N.I. Reporting key features in cold-adapted bacteria. Life. 2018;8(1).
http://dx.doi.org/10.3390/life8010008