Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Water must be transported long distances in tall plants, resulting in increasing hydraulic resistance, which may place limitations on the maximum plant height (H max ) in a given habitat. However, the coordination of hydraulic traits with H max and habitat aridity remains poorly understood. To explore whether H max modifies the trade-off between hydraulic efficiency and safety or how water availability might influence the relationship between H max and other hydraulic traits, we compiled a dataset including H max and 11 hydraulic traits for 1281 woody species from 369 sites worldwide. We found that taller species from wet habitats exhibited greater xylem efficiency and lower hydraulic safety, wider conduits, lower conduit density, and lower sapwood density, which were all associated with habitat water availability. Plant height and hydraulic functioning appear to represent a single, coordinated axis of variation, aligned primarily with water availability, thus suggesting an important role for this axis in species sorting processes. Copyright © 2019 The Authors.


Documento: Artículo
Título:Hydraulic traits are coordinated with maximum plant height at the global scale
Autor:Liu, H.; Gleason, S.M.; Hao, G.; Hua, L.; He, P.; Goldstein, G.; Ye, Q.
Filiación:Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO 80526, United States
Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110010, China
University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, United States
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, Buenos Aires, C1428EGA, Argentina
Palabras clave:Economic and social effects; Efficiency; Global scale; Hydraulic efficiency; Hydraulic resistances; Plant height; Sorting process; Trade off; Water availability; Woody species; Ecosystems
Título revista:Science Advances
Título revista abreviado:Sci. Adv.


  • Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., Plant ecological strategies: Some leading dimensions of variation between species (2002) Annu. Rev. Ecol. Syst., 33, pp. 125-159
  • Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Gorné, L.D., The global spectrum of plant form and function (2016) Nature, 529, pp. 167-171
  • Ryan, M.G., Yoder, B.J., Hydraulic limits to tree height and tree growth (1997) Bioscience, 47, pp. 235-242
  • Savage, J.A., Beecher, S.D., Clerx, L., Gersony, J.T., Knoblauch, J., Losada, J.M., Jensen, K.H., Holbrook, N.M., Maintenance of carbohydrate transport in tall trees (2017) Nat. Plants, 3, pp. 965-972
  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Villar, R., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827
  • Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Yamakura, T., Tree allometry and improved estimation of carbon stocks and balance in tropical forests (2005) Oecologia, 145, pp. 87-99
  • Marks, C.O., Muller-Landau, H.C., Tilman, D., Tree diversity, tree height and environmental harshness in eastern and western North America (2016) Ecol. Lett., 19, pp. 743-751
  • Domec, J.-C., Lachenbruch, B., Meinzer, F.C., Woodruff, D.R., Warren, J.M., McCulloh, K.A., Maximum height in a conifer is associated with conflicting requirements for xylem design (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 12069-12074
  • Givnish, T.J., On the adaptive significance of leaf height in forest herbs (1982) Am. Nat., 120, pp. 353-381
  • Koch, G.W., Sillett, S.C., Jennings, G.M., Davis, S.D., The limits to tree height (2004) Nature, 428, pp. 851-854
  • Givnish, T.J., Wong, S.C., Stuart-Williams, H., Holloway-Phillips, M., Farquhar, G.D., Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia (2014) Ecology, 95, pp. 2991-3007
  • Falster, D.S., Westoby, M., Plant height and evolutionary games (2003) Trends Ecol. Evol., 18, pp. 337-343
  • Moles, A.T., Warton, D.I., Warman, L., Swenson, N.G., Laffan, S.W., Zanne, A.E., Pitman, A., Leishman, M.R., Global patterns in plant height (2009) J. Ecol., 97, pp. 923-932
  • Rueda, M., Godoy, O., Hawkins, B.A., Spatial and evolutionary parallelism between shade and drought tolerance explains the distributions of conifers in the conterminous United States (2017) Global Ecol. Biogeogr., 26, pp. 31-42
  • Larjavaara, M., The world’s tallest trees grow in thermally similar climates (2014) New Phytol, 202, pp. 344-349
  • Olson, M.E., Soriano, D., Rosell, J.A., Anfodillo, T., Donoghue, M.J., Edwards, E.J., León-Gómez, C., Méndez-Alonzo, R., Plant height and hydraulic vulnerability to drought and cold (2018) Proc. Natl. Acad. Sci. U.S.A., 115, pp. 7551-7556
  • Schuldt, B., Knutzen, F., Delzon, S., Jansen, S., Müller-Haubold, H., Burlett, R., Clough, Y., Leuschner, C., How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? (2016) New Phytol, 210, pp. 443-458
  • Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Zanne, A.E., Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species (2016) New Phytol, 209, pp. 123-136
  • Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., Jansen, S., Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 5024-5029
  • Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Zanne, A.E., Global convergence in the vulnerability of forests to drought (2012) Nature, 491, pp. 752-755
  • Whitehead, D., Edwards, W.R.N., Jarvis, P.G., Conducting sapwood area, foliage area, and permeability in mature trees of Piceasitchensis and Pinuscontorta (1984) Can. J. Forest. Res., 14, pp. 940-947
  • Gleason, S.M., Butler, D.W., Ziemińska, K., Waryszak, P., Westoby, M., Stem xylem conductivity is key to plant water balance across Australian angiosperm species (2012) Funct. Ecol., 26, pp. 343-352
  • Sterck, F., Zweifel, R., Trees maintain a similar conductance per leaf area through integrated responses in growth, allocation, architecture and anatomy (2016) Tree Physiol, 36, pp. 1307-1309
  • McDowell, N., Barnard, H., Bond, B., Hinckley, T., Hubbard, R., Ishii, H., Köstner, B., Whitehead, D., The relationship between tree height and leaf area: Sapwood area ratio (2002) Oecologia, 132, pp. 12-20
  • McCulloh, K.A., Sperry, J.S., Adler, F.R., Water transport in plants obeys Murray’s law (2003) Nature, 421, pp. 939-942
  • West, G.B., Brown, J.H., Enquist, B.J., A general model for the structure and allometry of plant vascular systems (1999) Nature, 400, pp. 664-667
  • Pittermann, J., Sperry, J.S., Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size (2006) Plant Physiol, 140, pp. 374-382
  • Meinzer, F.C., Johnson, D.M., Lachenbruch, B., McCulloh, K.A., Woodruff, D.R., Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance (2009) Funct. Ecol., 23, pp. 922-930
  • McCulloh, K.A., Johnson, D.M., Meinzer, F.C., Woodruff, D.R., The dynamic pipeline: Hydraulic capacitance and xylem hydraulic safety in four tall conifer species (2014) Plant Cell Environ, 37, pp. 1171-1183
  • Santiago, L.S., De Guzman, M.E., Baraloto, C., Vogenberg, J.E., Brodie, M., Hérault, B., Fortunel, C., Bonal, D., Coordination and trade‐offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species (2018) New Phytol, 218, pp. 1015-1024
  • Burgess, S.S., Pittermann, J., Dawson, T.E., Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns (2006) Plant Cell Environ, 29, pp. 229-239
  • Phillips, N., Bond, B.J., Mcdowell, N.G., Ryan, M.G., Schauer, A., Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees (2003) Funct. Ecol., 17, pp. 832-840
  • Buckley, T.N., Roberts, D.W., How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth? (2006) Tree Physiol, 26, pp. 145-157
  • Liu, H., Xu, Q., He, P., Santiago, L.S., Yang, K., Ye, Q., Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae (2015) Sci. Rep., 5, p. 12246
  • Bartlett, M.K., Scoffoni, C., Sack, L., The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis (2012) Ecol. Lett., 15, pp. 393-405
  • Gleason, S.M., Butler, D.W., Waryszak, P., Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia (2013) Int. J. Plant Sci., 174, pp. 1292-1301
  • Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P., Scholz, F.G., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees (2005) Trees, 19, pp. 296-304
  • Markewitz, D., Devine, S., Davidson, E.A., Brando, P., Nepstad, D.C., Soil moisture depletion under simulated drought in the Amazon: Impacts on deep root uptake (2010) New Phytol, 187, pp. 592-607
  • Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.-C., Peña-Claros, M., Sterck, F., Sass-Klaassen, U., The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species (2010) New Phytol, 185, pp. 481-492
  • Goldstein, G., Andrade, J.L., Meinzer, F.C., Holbrook, N.M., Cavelier, J., Jackson, P., Celis, A., Stem water storage and diurnal patterns of water use in tropical forest canopy trees (1998) Plant Cell Environ, 21, pp. 397-406
  • Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., The evolution of plant functional variation: Traits, spectra, and strategies (2003) Int. J. Plant Sci., 164, pp. S143-S164
  • Osnas, J.L.D., Katabuchi, M., Kitajima, K., Wright, S.J., Reich, P.B., Van Bael, S.A., Kraft, N.J.B., Lichstein, J.W., Divergent drivers of leaf trait variation within species, among species, and among functional groups (2018) Proc. Natl. Acad. Sci. U.S.A., 115, pp. 5480-5485
  • Anderegg, L.D.L., Berner, L.T., Badgley, G., Sethi, M.L., Law, B.E., HilleRisLambers, J., Within‐species patterns challenge our understanding of the leaf economics spectrum (2018) Ecol. Lett., 21, pp. 734-744
  • Bouche, P.S., Larter, M., Domec, J.-C., Burlett, R., Gasson, P., Jansen, S., Delzon, S., A broad survey of hydraulic and mechanical safety in the xylem of conifers (2014) J. Exp. Bot., 65, pp. 4419-4431
  • Tao, S., Guo, Q., Li, C., Wang, Z., Fang, J., Global patterns and determinants of forest canopy height (2016) Ecology, 97, pp. 3265-3270
  • Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Oleksyn, J., (2011) Glob. Chang. Biol, 17, pp. 2905-2935. , G. Onipchenko, Y. Onoda, J. Ordoñez, G. Overbeck, W. A. Ozinga, S. Patiño, S. Paula, J. G. Pausas, J. Peñuelas, O. L. Phillips, Pillar, H. Poorter, L. Poorter, Poschlod, A. Prinzing, R. Proulx, A. Rammig, S. Reinsch, B. Reu, L. Sack, B. Salgado-Negret, J. Sardans, S. Shiodera, B. Shipley, A. Siefert, E. Sosinski, J.-F. Soussana, E. Swaine, N. Swenson, K. Thompson, Thornton, M. Waldram, E. Weiher, M. White, S. White, S. J. Wright, B. Yguel, S. Zaehle, A. E. Zanne, C. Wirth, TRY—A global database of plant traits
  • Vertessy, R.A., Benyon, R.G., O’sullivan, S.K., Gribben, P.R., Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest (1995) Tree Physiol, 15, pp. 559-567
  • Moles, A.T., Falster, D.S., Leishman, M.R., Westoby, M., Small‐seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime (2004) J. Ecol., 92, pp. 384-396
  • Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’amico, J.A., Kassem, K.R., Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity (2001) Bioscience, 51, pp. 933-938
  • Hijmans, R., van Etten, J., Cheng, J., Sumner, M., Mattiuzzi, M., Greenberg, J.A., Lamigueiro, O.P., Wueest, R., Raster: Geographic data analysis and modeling (2013) R Package Ver, 2, pp. 1-66. , Institute for Mathematics Applied Geosciences
  • (2013) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing
  • Whittaker, R.H., (1975) Communities and Ecosystems, 2, p. 385. , MacMillan, ed
  • Trabucco, A., Zomer, R., (2009) Global Aridity Index (Global-Aridity) And Global Potential Evapo-Transpiration (Global-Pet) Geospatial Database, , CGIAR Consortium for Spatial Information
  • Klein, T., Randin, C., Körner, C., Water availability predicts forest canopy height at the global scale (2015) Ecol. Lett., 18, pp. 1311-1320
  • Warton, D.I., Duursma, R.A., Falster, D.S., Taskinen, S., 3—An R package for estimation and inference about allometric lines (2012) Methods Ecol. Evol., 2, pp. 257-259
  • Bates, D., Mächler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4 (2015) J. Stat. Softw., 67, pp. 1-48
  • Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., (2015) Package ‘lmerTest’. R Package Version, , 2.0–29
  • Nakagawa, S., Schielzeth, H., A general and simple method for obtaining R 2 from generalized linear mixed-effects models (2013) Methods Ecol. Evol., 4, pp. 133-142
  • Rosseel, Y., Lavaan: An R package for structural equation modeling and more (2012) J. Stat. Softw., 48, pp. 1-36


---------- APA ----------
Liu, H., Gleason, S.M., Hao, G., Hua, L., He, P., Goldstein, G. & Ye, Q. (2019) . Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 5(2).
---------- CHICAGO ----------
Liu, H., Gleason, S.M., Hao, G., Hua, L., He, P., Goldstein, G., et al. "Hydraulic traits are coordinated with maximum plant height at the global scale" . Science Advances 5, no. 2 (2019).
---------- MLA ----------
Liu, H., Gleason, S.M., Hao, G., Hua, L., He, P., Goldstein, G., et al. "Hydraulic traits are coordinated with maximum plant height at the global scale" . Science Advances, vol. 5, no. 2, 2019.
---------- VANCOUVER ----------
Liu, H., Gleason, S.M., Hao, G., Hua, L., He, P., Goldstein, G., et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. 2019;5(2).