Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


It is widely spread in the literature that non-Markovianity (NM) may be regarded as a resource in quantum mechanics. However, it is still unclear how and when this alleged resource may be exploited. Here, we study the relationship between NM and quantum optimal control under the objective of generating entanglement within M noninteracting subsystems, each one coupled to the same non-Markovian environment. Thus, we design a variety of entangling protocols that are only achievable due to the existence of the environment. We show that NM plays a crucial role in all the entangling protocols considered, revealing that the degree of NM completely determines the success of the entangling operation performed by the control. This is a demonstration of the virtues of NM and the way that it can be exploited in a general entangling setup. © 2019 American Physical Society.


Documento: Artículo
Título:Entangling protocols due to non-Markovian dynamics
Autor:Mirkin, N.; Poggi, P.; Wisniacki, D.
Filiación:Departamento de Física J. J. Giambiagi and IFIBA, FCEyN, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131-0001, United States
Palabras clave:Entangling operation; Non-Markovian; Non-markovian dynamics; Noninteracting; Quantum optimal controls; Quantum entanglement
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A


  • Bekenstein, J.D., (1981) Phys. Rev. Lett., 46, p. 623
  • Lloyd, S., (2000) Nature (London), 406, p. 1047
  • Giovannetti, V., Lloyd, S., Maccone, L., (2011) Nat. Photonics, 5, p. 222
  • Schlosshauer, M.A., (2007) Decoherence: And the Quantum-To-Classical Transition, , (Springer Science & Business Media, Berlin)
  • Breuer, H.-P., Petruccione, F., (2002) The Theory of Open Quantum Systems, , (Oxford University Press on Demand, Oxford)
  • Breuer, H.-P., (2012) J. Phys. B: At., Mol. Opt. Phys., 45, p. 154001
  • Bylicka, B., Chruściński, D., Maniscalco, S., (2014) Sci. Rep., 4, p. 5720
  • Reich, D.M., Katz, N., Koch, C.P., (2015) Sci. Rep., 5, p. 12430
  • Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S., (2015) Phys. Rev. Lett., 114, p. 233602
  • Deffner, S., Lutz, E., (2013) Phys. Rev. Lett., 111, p. 10402
  • Mirkin, N., Toscano, F., Wisniacki, D.A., (2016) Phys. Rev. A, 94, p. 52125
  • Schmidt, R., Negretti, A., Ankerhold, J., Calarco, T., Stockburger, J.T., (2011) Phys. Rev. Lett., 107, p. 130404
  • Hwang, B., Goan, H.-S., (2012) Phys. Rev. A, 85, p. 32321
  • Khurana, D., Agarwalla, B.K., Mahesh, T.S., ; Franco, R.L., Bellomo, B., Maniscalco, S., Compagno, G., (2013) Int. J. Mod. Phys. B, 27, p. 1345053
  • Man, Z.-X., Xia, Y.-J., Lo Franco, R., (2015) Phys. Rev. A, 92, p. 12315
  • Bellomo, B., Lo Franco, R., Compagno, G., (2007) Phys. Rev. Lett., 99, p. 160502
  • Estrada, A.F., Pachón, L.A., (2015) New J. Phys., 17, p. 33038
  • Torre, G., Illuminati, F., ; Haase, J.F., Vetter, P.J., Unden, T., Smirne, A., Rosskopf, J., Naydenov, B., Jelezko, F., Huelga, S.F., (2018) Phys. Rev. Lett., 121, p. 60401
  • Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Köckenberger, W., Kosloff, R., Kuprov, I., Schulte-Herbrüggen, T., (2015) Eur. Phys. J. D, 69, p. 279
  • Koch, C.P., (2016) J. Phys.: Condens. Matter, 28, p. 213001
  • Hutton, A., Bose, S., (2004) Phys. Rev. A, 69, p. 42312
  • Breuer, H.-P., Burgarth, D., Petruccione, F., (2004) Phys. Rev. B, 70, p. 45323
  • Fischer, J., Breuer, H.-P., (2007) Phys. Rev. A, 76, p. 52119
  • Semin, V., Sinayskiy, I., Petruccione, F., (2014) Phys. Rev. A, 89, p. 12107
  • Benatti, F., Floreanini, R., Piani, M., (2003) Phys. Rev. Lett., 91, p. 70402
  • Verstraete, F., Wolf, M.M., Cirac, J.I., (2009) Nat. Phys., 5, p. 633
  • Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P., (2008) Phys. Rev. A, 78, p. 42307
  • Arenz, C., Gualdi, G., Burgarth, D., (2014) New J. Phys., 16, p. 65023
  • Floether, F.F., De Fouquieres, P., Schirmer, S.G., (2012) New J. Phys., 14, p. 73023
  • O'Meara, C., Dirr, G., Schulte-Herbruggen, T., (2012) IEEE Trans. Autom. Control, 57, p. 2050
  • Schulte-Herbrüggen, T., Spörl, A., Khaneja, N., Glaser, S., (2011) J. Phys. B: At., Mol. Opt. Phys., 44, p. 154013
  • Johansson, J., Nation, P., Nori, F., (2012) Comput. Phys. Commun., 183, p. 1760
  • Rivas, A., Huelga, S.F., Plenio, M.B., (2014) Rep. Prog. Phys., 77, p. 94001
  • Addis, C., Ciccarello, F., Cascio, M., Palma, G.M., Maniscalco, S., (2015) New J. Phys., 17, p. 123004
  • Pineda, C., Gorin, T., Davalos, D., Wisniacki, D.A., García-Mata, I., (2016) Phys. Rev. A, 93, p. 22117
  • Poggi, P., Lombardo, F., Wisniacki, D., (2017) Europhys. Lett., 118, p. 20005
  • Breuer, H.-P., Laine, E.-M., Piilo, J., (2009) Phys. Rev. Lett., 103, p. 210401
  • Breuer, H.-P., Laine, E.-M., Piilo, J., Vacchini, B., (2016) Rev. Mod. Phys., 88, p. 21002
  • Wißmann, S., Karlsson, A., Laine, E.-M., Piilo, J., Breuer, H.-P., (2012) Phys. Rev. A, 86, p. 62108
  • Addis, C., Bylicka, B., Chruściński, D., Maniscalco, S., (2014) Phys. Rev. A, 90, p. 52103


---------- APA ----------
Mirkin, N., Poggi, P. & Wisniacki, D. (2019) . Entangling protocols due to non-Markovian dynamics. Physical Review A, 99(2).
---------- CHICAGO ----------
Mirkin, N., Poggi, P., Wisniacki, D. "Entangling protocols due to non-Markovian dynamics" . Physical Review A 99, no. 2 (2019).
---------- MLA ----------
Mirkin, N., Poggi, P., Wisniacki, D. "Entangling protocols due to non-Markovian dynamics" . Physical Review A, vol. 99, no. 2, 2019.
---------- VANCOUVER ----------
Mirkin, N., Poggi, P., Wisniacki, D. Entangling protocols due to non-Markovian dynamics. Phys. Rev. A. 2019;99(2).