Artículo

Beig, G.; Keckhut, P.; Lowe, R.P.; Roble, R.G.; Mlynczak, M.G.; Scheer, J.; Fomichev, V.I.; Offermann, D.; French, W.J.R.; Shepherd, M.G.; Semenov, A.I.; Remsberg, E.E.; She, C.Y.; Lübken, F.J.; Bremer, J.; Clemesha, B.R.; Stegman, J.; Sigernes, F.; Fadnavis, S. "Review of mesospheric temperature trends" (2003) Reviews of Geophysics. 41(4):1-1 - 1-41
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In recent times it has become increasingly clear that releases of trace gases from human activity have a potential for causing change in the upper atmosphere. However, our knowledge of systematic changes and trends in the temperature of the mesosphere and lower thermosphere is relatively limited compared to the Earth's lower atmosphere, and not much effort has been made to synthesize these results so far. In this article, a comprehensive review of long-term trends in the temperature of the region from 50 to 100 km is made on the basis of the available up-to-date understanding of measurements and model calculations. An objective evaluation of the available data sets is attempted, and important uncertainly factors are discussed. Some natural variability factors, which are likely to play a role in modulating temperature trends, are also briefly touched upon. There are a growing number of experimental results centered on, or consistent with, zero temperature trend in the mesopause region (80-100 km). The most reliable data sets show no significant trend but an uncertainty of at least 2 K/decade. On the other hand, a majority of studies indicate negative trends in the lower and middle mesosphere with an amplitude of a few degrees (2-3 K) per decade. In tropical latitudes the cooling trend increases in the upper mesosphere. The most recent general circulation models indicate increased cooling closer to both poles in the middle mesosphere and a decrease in cooling toward the summer pole in the upper mesosphere. Quantitatively, the simulated cooling trend in the middle mesosphere produced only by CO2 increase is usually below the observed level. However, including other greenhouse gases and taking into account a "thermal shrinking" of the upper atmosphere result in a cooling of a few degrees per decade. This is close to the lower limit of the observed nonzero trends. In the mesopause region, recent model simulations produce trends, usually below 1 K/decade, that appear to be consistent with most observations in this region. Copyright 2003 by the American Geophysical Union.

Registro:

Documento: Artículo
Título:Review of mesospheric temperature trends
Autor:Beig, G.; Keckhut, P.; Lowe, R.P.; Roble, R.G.; Mlynczak, M.G.; Scheer, J.; Fomichev, V.I.; Offermann, D.; French, W.J.R.; Shepherd, M.G.; Semenov, A.I.; Remsberg, E.E.; She, C.Y.; Lübken, F.J.; Bremer, J.; Clemesha, B.R.; Stegman, J.; Sigernes, F.; Fadnavis, S.
Filiación:Indian Inst. of Tropical Meteorology, Pune-411008, India
Service d'Aeronomie, Institut Pierre Simon Laplace, Verrieres-Le-Buisson Cedex 91 371, France
Ctr.for Res. in Earth/Space Technol., University of Western Ontario, London, Ont. M7A 3K7, Canada
High Altitude Observatory, Natl. Ctr. for Atmospheric Research, Boulder, CO 80307, United States
Radiation and Aerosol Branch, NASA Langley Research Center, Hampton, VA 23681, United States
Insto. de Astronomia/Fisica Espacio, Buenos Aires 1428, Argentina
Dept. of Earth/Atmospheric Science, York University, Toronto, Ont. M3J 1P3, Canada
Physics Department, University of Wuppertal, Wuppertal 42097, Germany
Atmospheric and Space Physics Group, Australian Antarctic Division, Kingston, Tasmania 7050, Australia
Centre for Res. in Earth/Space Sci., York University, Toronto, Ont. M3J 1P3, Canada
Obukhov Inst. of Atmospheric Physics, Russian Academy of Science, Moscow 109017, Russian Federation
Atmospheric Sciences Research, NASA Langley Research Center, Hampton, VA 23681, United States
Physics Department, Colorado State University, Fort Collins, CO 80523-1785, United States
Leibniz-Inst. of Atmospheric Physics, Kühlungborn 18255, Germany
Insto. Nacl. de Pesquisas Espaciais, Sao Jose dos Campos, SP 12245-970, Brazil
Meteorologiska Institutionen, Stockholms Universitet, Stockholm S-106 91, Sweden
University Courses on Svalbard, Longyearbyen N-9171, Norway
Palabras clave:Greenhouse gases; Mesosphere; Temperature trends; Thermal shrinking; atmospheric structure; climate change; mesopause; temperature
Año:2003
Volumen:41
Número:4
Página de inicio:1
Página de fin:1 - 1-41
DOI: http://dx.doi.org/10.1029/2002RG000121
Título revista:Reviews of Geophysics
Título revista abreviado:Rev. Geophys.
ISSN:87551209
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_87551209_v41_n4_p1_Beig

Referencias:

  • Aikin, A.C., Chanin, M.L., Nash, J., Kendig, D.J., Temperature trends in the lower mesosphere (1991) Geophys. Res. Lett., 18, pp. 416-419
  • Akmaev, R.A., Modeling the cooling due to CO2 increases in the mesosphere and lower thermosphere (2002) Phys. Chem. Earth, 27, pp. 521-528
  • Akmaev, R.A., Fomichev, V.I., Cooling of the mesosphere and lower thermosphere due to doubling of CO2 (1998) Ann. Geophys., 16, pp. 1501-1512
  • Akmaev, R.A., Fomichev, V.I., A model estimate of cooling in the mesosphere and lower thermosphere due to CO2 increase over the last 3-4 decades (2000) Geophys. Res. Lett., 27, pp. 2113-2116
  • Akmaev, R.A., Fomichev, V.I., Gavrilov, N.M., Shved, G.M., Simulation of the zonal mean climatology of the middle atmosphere with a three-dimensional spectral model for solstice and equinox conditions (1992) J. Atmos. Terr. Phys., 54, pp. 119-128
  • Akmaev, R.A., Forbes, J.M., Hagan, M.E., Simulation of tides with a spectral mesosphere/lower thermosphere model (1996) Geophys. Res. Lett., 23, pp. 2173-2176
  • Akmaev, R.A., Yudin, V.A., Ortland, D.A., SMLTM simulations of the diurnal tide: Comparison with UARS observations (1997) Ann. Geophys., 15, pp. 1187-1197
  • Angell, J.K., Rocketsonde evidence for a stratospheric temperature decrease in the western hemisphere during 1973-85 (1987) Mon. Weather Rev., 115, pp. 2569-2577
  • Angell, J.K., Stratospheric temperature change as a function of height and sunspot number density during 1972-89 based on rocketsonde and radiosonde data (1991) J. Clim., 4, pp. 1170-1180
  • Baker, D.J., Stair, A.T., Rocket measurements of the altitude distribution of the hydroxyl ariglow (1988) Phys. Scr., 37, pp. 611-622
  • Batista, P.P., Takahashi, H., Clemesha, B.R., Solar cycle and the QBO effect on the mesospheric temperature and nightglow emissions at a low latitude station (1994) Adv. Space Res., 14 (9), pp. 221-224
  • Beig, G., The relative importance of solar activity and anthropogenic influences on the ion composition, temperature, and associated neutrals of the middle atmosphere (2000) J. Geophys. Res., 105, pp. 19841-19856
  • Beig, G., Long-term forcing of greenhouse gases and natural events on atmospheric chemical composition and thermal structure (2000) Long Term Changes and Trends in the Atmosphere, 1, pp. 88-114. , edited by G. Beig, New Age Int., New Delhi
  • Beig, G., Overview of the mesospheric temperature trend and factors of uncertainty (2002) Phys. Chem. Earth, 27, pp. 509-519
  • Beig, G., Fadnavis, S., In search of greenhouse signals in the equatorial middle atmosphere (2001) Geophys. Res. Lett., 28, pp. 4603-4606
  • Beig, G., Mitra, A.P., Atmospheric and ionospheric response to trace gas perturbations through the ice age to the next century in the middle atmosphere, part I-Chemical composition and thermal structure (1997) J. Atmos. Sol. Terr. Phys., 59, pp. 1245-1259
  • Berger, U., Dameris, M., Cooling of the upper atmosphere due to CO2 increases: "A model study" (1993) Ann. Geophys., 11, pp. 809-819
  • Bittner, M., Offermann, D., Graef, H.-H., Mesopause temperature variability above a midlatitude station in Europe (2000) J. Geophys, Res., 105, pp. 2045-2058
  • Bittner, M., Offermann, D., Graef, H.-H., Donner, M., Hamilton, K., An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations (2002) J. Atmos. Sol. Terr. Phys., 64, pp. 1147-1166
  • Boer, G.J., Flato, G., Reader, M.C., Ramsden, D., A transient climate change simulation with greenhouse gas and aerosol forcing: Experimental design and comparison with the instrumental record for the twentieth century (2000) Clim. Dyn., 16, pp. 405-425
  • Brasseur, G., The response of the middle atmosphere to long-term and short-term solar variability: A two-dimensional model (1993) J. Geophys. Res., 98, pp. 23079-23090
  • Brasseur, G., Offermann, D., Recombination of atomic oxygen near the mesopause: Interpretation of rocket data (1986) J. Geophys. Res., 91, pp. 10818-10824
  • Brasseur, G., Solomon, S., (1986) Aeronomy of the Middle Atmosphere, , 2nd ed., D. Reidel, Norwell Mass
  • Bremer, J., Long-term trends in the meso- and thermosphere (1997) Adv. Space Res., 20 (11), pp. 2075-2083
  • Bremer, J., Trends in the ionospheric E and F-regions over Europe (1998) Ann. Geophys., 16, pp. 986-996
  • Bremer, J., Berger, U., Mesospheric temperature trends derived from ground-based LF phase-height observations at mid-latitudes: Comparison with model simulations (2002) J. Atmos. Sol. Terr. Phys., 64, pp. 805-816
  • Bruhl, C., Crutzen, P.J., Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man's activities, estimated with a one-dimensional coupled photochemical climate model (1988) Clim. Dyn., 2, pp. 173-203
  • Burns, G.B., French, W.J.R., Greet, P.A., Phillips, F.A., Williams, P.F.B., Finlayson, K., Klich, G., Seasonal variations and inter-year trends in seven years of hydroxyl airglow rotational temperature at Davis station (69°S, 78°E), Antartica (2002) J. Atmos. Sol. Terr. Phys., 64, pp. 1167-1174
  • Burton, S.P., Thomason, L.W., (2002) SAGE II Contribution to Mesospheric Temperature Trend Assessment 1. Present Status and Issues, , Tech. Rep. II-F, Joint Working Group LT-TIME "Long-Term Trends in the Ionosphere Thermosphere and Mesosphere" of IAGA and ICMA, Pune, India
  • Chanin, M.-L., Long-term trend in the middle atmosphere temperature (1993) Role of the Stratosphere in Global Change, 8, pp. 301-317. , edited by M.-L. Chanin, NATO ASI Ser., Ser. I, Springer-Verlag, New York
  • Chanin, M.-L., Keckhut, P., Hauchecorne, A., Labitzke, K., The solar activity-Q.B.O. effect in the lower thermosphere (1989) Ann. Geophys., 7, pp. 463-470
  • Chen, L., London, J., Brasseur, G., Middle atmospheric ozone and temperature responses to solar irradiance variations over 27-day periods (1997) J. Geophys. Res., 102, pp. 29957-29979
  • Clancy, R.T., Rusch, D.W., Climatology and trends of mesospheric temperatures (58-90 km) based on 1982-1986 SME limb scattering profiles (1989) J. Geophys. Res., 94, pp. 3377-3393
  • Clancy, R.T., David, W.R., Callan, M.T., Temperature minima in the average thermal structure of the middle mesosphere (70-80 km) from analysis of 40- to 92-km SME global temperature profiles (1994) J. Geophys. Res., 99, pp. 19001-19020
  • Clemesha, B.R., Simonich, D.M., Batista, P.P., A long-term trend in the height of the atmospheric sodium layer: Possible evidence for global change (1992) Geophys. Res. Lett., 19, pp. 457-460
  • Clemesha, B.R., Batista, P.P., Simonich, D.M., Long-term and solar cycle changes in the atmospheric sodium layer (1997) J. Atmos. Sol. Terr. Phys., 13, pp. 1673-1678
  • Clemesha, B.R., Batista, P.P., Simonich, D.M., Comment on "In search of greenhouse signals in the equatorial middle atmosphere" by Gufran Beig and S. Fadnavis (2002) Geophys. Res. Lett., 29 (16), p. 1810. , doi:10.1029/2002GL015097
  • Crutzen, P.J., Energy conversions and mean vertical motions in the high latitude summer mesosphere and lower thermosphere (1971) Mesospheric Models and Related Experiments, pp. 78-88. , edited by G. Fiocco, D. Reidel, Norwell, Mass
  • Danilov, A.D., Long-term changes of the mesosphere and lower thermosphere temperature and composition (1997) Adv. Space Res., 20, pp. 2137-2147
  • de Grandpré, J., Beagley, S.R., Fomichev, V.I., Griffioen, E., McConnell, J.C., Medvedev, A.S., Shepherd, T.G., Ozone climatology using interactive chemistry: Results from the Canadian middle atmosphere model (2000) J. Geophys. Res., 105, pp. 26475-26491
  • Dickinson, R.E., Ridley, E.C., Roble, R.G., A three-dimensional general circulation model of the thermosphere (1981) J. Geophys. Res., 86, pp. 1499-1512
  • Dickinson, R.E., Ridley, E.C., Roble, R.G., Thermospheric general circulation with coupled dynamics and composition (1984) J. Atmos. Sci., 41, pp. 205-219
  • Donnelly, R.F., Solar UV spectral irradiance variations (1991) J. Geomagn. Geoelectr., 43, pp. 835-842
  • Dunkerton, T.J., Delisi, D.P., Baldwin, M.P., Middle atmosphere cooling trend in historical rocketsonde data (1998) Geophys. Res. Lett., 25, pp. 3371-3374
  • Ebel, A., Contributions of gravity waves to the momentum, heat and turbulent energy budget of the upper mesosphere and lower thermosphere (1984) J. Atmos. Terr. Phys., 46, pp. 727-737
  • Ejiri, M.K., Shiokawa, K., Ogawa, T., Kubota, M., Nakamura, T., Tsuda, T., Dual-site imaging observations of small-scale wave structures through OH and OI nightglow emissions (2002) Geophys. Res. Lett., 29 (10), p. 1445. , doi:10.1029/2001GL014257
  • Espy, P.J., Stegman, J., Trends and variability of mesospheric temperature at high-latitudes (2002) Phys. Chem. Earth, 27, pp. 543-553
  • Fels, S.B., Mahilman, J.D., Schwarzkopf, M.D., Sinclair, R.W., Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response (1980) J. Atmos. Sci., 37, pp. 2265-2297
  • Fishkova, L.M., (1983) The Night Airglow of the Earth Mid-Latitude Upper Atmosphere, 59. , Metsniereba, Tbilisi
  • Fishkova, L.M., Martsvaladze, N.M., Shefov, N.N., Long-term variations of the sodium emission of the nocturnal upper atmosphere (2001) Geomagn. Aeron., 41, pp. 528-531. , in Russian
  • Fomichev, V.I., Blanchet, J.-P., Turner, D.S., Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration (1998) J. Geophys. Res., 103, pp. 11505-11528
  • Fomichev, V.I., Ward, W.E., Beagley, S.R., McLandress, C., McConnell, J.C., McFarlane, N.A., Shepherd, T.G., Extended Canadian middle atmosphere model: Zonal-mean climatology and physical parameterizations (2002) J. Geophys. Res., 107 (D10), p. 4087. , doi:10.1029/2001JD000479
  • Forbes, J.M., Atmospheric tides: 2. The solar and lunar semi-diurnal components (1982) J. Geophys. Res., 87, pp. 5241-5252
  • Frederick, J.E., Measurement requirements for the detection of ozone trends (1984) Ozone Correlative Measurements Workshop, 2362, pp. B1-B19. , NASA Conf. Publ
  • French, W.J.R., (2002) Hydroxyl Airglow Temperatures Above Davis Station, Antarctica, , Ph.D. thesis, Univ. of Tasmania, Hobart
  • French, W.J.R., Burns, G.B., Finlayson, K., Greet, P.A., Lowe, R.P., Williams, P.F.B., Hydroxyl (6-2) airglow emission intensity ratios for rotational temperature determination (2000) Ann. Geophys., 18, pp. 1293-1303
  • Gadsden, M., A secular change in noctilucent cloud occurrence (1990) J. Atmos. Terr. Phys., 52, pp. 247-251
  • Gadsden, M., The secular changes in noctilucent cloud occurrence: Study of a 31-year sequence to clarify the causes (1997) Adv. Space Res., 20 (11), pp. 2097-2100
  • Gadsden, M., The north-west Europe data on noctilucent clouds: A survey (1998) J. Atmos. Sol. Terr. Phys., 60, pp. 1163-1174
  • Garcia, R.R., Solomon, S., The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere (1985) J. Geophys. Res., 90, pp. 3850-3868
  • Gardner, C.S., Yang, W., Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico (1998) J. Geophys. Res., 103, pp. 16909-16927
  • Gavrilov, N.M., Fukao, S., Nakamura, T., Peculiarities of interannual changes in the mean wind and gravity wave characteristics in the mesosphere over Shigaraki, Japan (1999) Geophys. Res. Lett., 26, pp. 2457-2460
  • Gavrilov, N.M., Fukao, S., Nakamura, T., Gravity wave intensity and momentum fluxes in the mesosphere over Shigaraki, Japan (35°N, 136°E) during 1986-1997 (2000) Ann. Geophys., 18, pp. 834-843
  • Gavrilov, N.M., Fukao, S., Nakamura, T., Jacobi, C., Kürschner, D., Manson, A.H., Meek, C.E., Comparative study of interannual changes of the mean winds and gravity wave activity in the middle atmosphere over Japan, central Europe and Canada (2002) J. Atmos. Sol. Terr. Phys., 64, pp. 1003-1010
  • Givishvili, G.V., Leshchenko, L.N., Lysenko, E.V., Perov, S.P., Semenov, A.I., Sergeenko, N.P., Fishkova, L.M., Shefov, N.N., Long-term trends of some characteristics of the Earth's atmosphere: I. Experimental results (1996) Izv. Russ. Acad. Sci. Atmos. Oceanic Phys., Engl. Transl., 32, pp. 303-312
  • Golitsyn, G.S., Semenov, A.I., Shefov, N.N., Fishkova, L.M., Lysenko, E.V., Perov, S.P., Long-term temperature trends in the middle and upper atmosphere (1996) Geophys. Res. Lett., 23, pp. 1741-1744
  • Golitsyn, G.S., Semenov, A.I., Shefov, N.N., Seasonal variations of the long-term temperature trend in the mesopause region (2000) Geomagn. Aeron., 40 (2), pp. 198-200
  • Greet, P.A., Innis, J., Dyson, P.L., High-resolution Fabry-Perot observations of mesospheric OH (6-2) emissions (1994) Geophys. Res. Lett., 21, pp. 1153-1156
  • Greet, P.A., French, W.J.R., Burns, G.B., Williams, P.F.B., Lowe, R.P., Finlayson, K., OH(6-2) spectra and rotational temperature measurements at Davis, Antarctica (1998) Ann. Geophys., 16, pp. 77-89
  • Groves, G.V., An empirical model for solar cycle changes in mesospheric structure at longitudes 44-77°E (1986) Planet. Space Sci., 34, pp. 1037-1041
  • Hagan, M.E., Forbes, J.M., Vial, F., On modeling migrating solar tides (1995) Geophys. Res. Lett., 22, pp. 893-896
  • Hagan, M.E., Burrage, M.D., Forbes, J.M., Hackney, J., Randel, W.J., Zhang, X., QBO effects on the diurnal tide in the upper atmosphere (1999) Earth Planets Space, 51, pp. 571-578
  • Hauchecorne, A., Chanin, M.-L., Density and temperature profiles obtained by lidar between 35 and 70 km (1980) Geophys. Res. Lett., 7, pp. 565-568
  • Hauchecorne, A., Chanin, M.-L., Keckhut, P., Climatology and trends of the middle atmospheric temperature (33-87 km) as seen by Rayleigh lidar over the south of France (1991) J. Geophys. Res., 96, pp. 15297-15309
  • Haynes, P.M., Marks, C.J., McIntyre, M.E., Shepherd, T.G., Shine, K.P., On the "downward control" by eddy-induced mean zonal forces (1991) J. Atmos. Sol. Terr. Phys., 48, pp. 651-678
  • Hernandez, G., Killeen, T.L., Optical measurements of wind and kinetic temperatures in the upper atmosphere (1988) Adv. Space Res., 8 (5-6 N), pp. 149-312
  • Hines, C.O., Dynamical heating of the upper atmosphere (1965) J. Geophys. Res., 70, pp. 177-183
  • Hood, L.L., The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere (1997) J. Geophys. Res., 102, pp. 1355-1370
  • Hood, L.L., Hauang, Z., Bougher, S.W., Mesospheric effects of solar ultraviolet variations: Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data (1991) J. Geophys. Res., 96, pp. 12989-13002
  • Houghton, J.T., Absorption and emission by carbon-dioxide in the mesosphere (1970) Q. J. R. Meteorol. Soc., 96, pp. 767-770
  • (1995) Radiative Forcing of Climate and an Evaluation of the IPCC IS92 Emission Scenarios, , Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., Cambridge Univ. Press, New York
  • Jacobi, C., Beckmann, B.-R., On the connection between upper atmospheric dynamics and tropospheric parameters: Correlations between mesopause region winds and the North Atlantic Oscillation (1999) Clim. Change, 43 (3), pp. 629-643
  • Jacobi, C., Kürschner, D., A possible connection of midlatitude mesosphere/lower thermosphere zonal winds and the southern oscillation (2002) Phys. Chem. Earth, 27, pp. 571-577
  • Jacobi, C., Schminder, R., Kürschner, D., On the influence of the stratospheric quasi-biennial oscillation on the mesopause zonal wind over central Europe (1996) Meteorol. Z. N.F., 5, pp. 218-223
  • Johnson, J.K., Gelman, M.E., Trends in the upper stratospheric temperature as observed by rocketsondes (1965-83) (1985) Handb. MAP, 18, pp. 24-27
  • Keating, G.M., Pitts, M.C., Brasseur, G., de Rudder, A., Response of middle atmosphere to short-term solar ultraviolet variations: 1. Observations (1987) J. Geophys. Res., 92, pp. 889-902
  • Keckhut, P., Kodera, K., Long-term changes of the upper stratosphere as seen by rocketsondes at Ryori (39°N, 141°E) (1999) Ann. Geophys., 17, pp. 1210-1217
  • Keckhut, P., Hauchecorne, A., Chanin, M.L., Midlatitude long-term variability of the atmosphere: Trends and cyclic and episodic changes (1995) J. Geophys. Res., 100, pp. 18887-18897
  • Keckhut, P.A., Schmidlin, F.J., Hauchecorne, A., Chanin, M.L., Stratospheric and mesospheric cooling trend estimates from U.S. rocketsondes at low latitude stations (8°S - 34°N), taking into account instrumental changes and natural variability (1999) J. Atmos. Sol. Terr. Phys., 61, pp. 447-459
  • Keckhut, P., Wild, J.D., Gelman, M., Miller, A.J., Hauchecorne, A., Investigations on long-term temperature changes in the upper stratosphere using lidar data and NCEP analyses (2001) J. Geophys. Res., 106, pp. 7937-7944
  • Kellog, W.W., Chemical heating above the mesopause in winter (1961) J. Meteorol., 18, pp. 373-381
  • Khvorostovskaya, L.E., Potekhin, I.Y., Shved, G.M., Ogibalov, V.P., Usyukova, T.V., Measurement of rate constant for quenching CO2 (010) by atomic oxygen at low temperatures: Re-assessment of cooling rate by the CO2 15-μm emission in the lower thermosphere (2003) Atmos. Oceanic Phys., , in press
  • Kirkwood, S., Stebel, K., Influence of planetary waves on noctilucent cloud occurrence over NW Europe (2003) J. Geophys. Res., 108 (D8), p. 8440. , doi:10.1029/2002JD002356
  • Kokin, G.A., Lysenko, E.V., On temperature trends of the atmosphere from rocket and radiosonde data (1994) J. Atmos. Terr. Phys., 56, pp. 1035-1040
  • Kokin, G.A., Lysenko, E.V., Rosenfeld, S.K., Temperature change in the stratosphere and mesosphere during 1964-1988 based on rocket sounding data (1990) Izv. Akad. Nauk. Phys, Atmos. Okeana, 26, pp. 702-710. , in Russian
  • Komuro, H., Long-term cooling in the stratosphere observed by aerological rockets at Ryori, Japan (1989) J. Meteorol. Soc. Jpn., 68, pp. 1081-1082
  • Krassovsky, V.I., Shefov, N.N., Yarin, V.I., Atlas of the airglow spectrum λ 3000-12400 A (1962) Planet Space Sci., 9, pp. 883-915
  • Krassovsky, V.I., Potapov, B.P., Semenov, A.I., Shagaev, M.V., Shefov, N.N., Sobolev, V.G., Toroshelidze, T.I., Internal gravity waves near the mesopause and the hydroxyl emission (1977) Ann. Geophys., 13, pp. 347-356
  • Krueger, D.A., She, C.Y., Observed "long-term" temperature change in a midlatitude mesopause region in response to external perturbation (1999) Earth Planets Space, 51, pp. 809-814
  • Kubota, M., Ishii, M., Shiokawa, K., Ejiri, M.K., Ogawa, T., Height measurements of nightglow structures observed by all-sky imagers (1999) Adv. Space Res., 24, pp. 593-596
  • Labitzke, K., Chanin, M.L., Changes in the middle atmosphere in winter related to the 11 year solar cycle (1988) Ann. Geophys., 6, pp. 643-644
  • Labitzke, K., McCormick, M.P., Stratospheric temperature increases due to Pinatubo aerosols (1992) Geophys. Res. Lett., 19, pp. 207-210
  • Langhoff, S.R., Werner, H.-J., Rosmus, P., Theoretical transition probabilities for the OH Meinel system (1986) J. Mol. Spectrosc., 118, pp. 507-529
  • Lastovicka, J., Trends in planetary wave activity (1994) Stud. Geophys. Geod., 38, pp. 206-212
  • Lastovicka, J., Buresova, D., Boska, J., Does the QBO and the Mt. Pinatubo volcanic eruption affect the gravity wave activity in the lower ionosphere? (1998) Stud. Geophys. Geod., 42, pp. 170-182
  • Leblanc, T.I., McDermid, S., Keckhut, P., Hauchecorne, A., She, C.Y., Krueger, D.A., Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes (1998) J. Geophys. Res., 103, pp. 17191-17204
  • Lindzen, R.S., Turbulence and stress owing to gravity wave and tidal breakdown (1981) J. Geophys. Res., 86, pp. 9707-9714
  • Liu, H., Hagan, M.E., Roble, R.G., Local mean state changes due to gravity wave breaking modulated by the diurnal tide (2000) J. Geophys. Res., 105, pp. 12381-12396
  • Lopez-Moreno, J.J., Rodrigo, R., Moreno, F., Lopez-Puertas, M., Molina, A., Altitude distribution of vibrationally-excited states of atmospheric hydroxyl at levels v-2 to v-7 (1987) Planet. Space Sci., 35, pp. 1029-1038
  • Lopez-Puertas, M., Taylor, F.W., Carbon dioxide 4.3 um emission in the Earth's atmosphere: A comparison between NIMBUS 7 SAMS measurements and non-LTE radiative transfer calculations (1989) J. Geophys. Res., 94, pp. 13045-13068
  • Lopez-Puertas, M., Lopez-Valverde, M.A., Taylor, F.W., Studies of solar heating by CO2 in the upper atmosphere using a non-LTE model and satellite data (1990) J. Atmos. Sci., 47, pp. 809-822
  • Lopez-Puertas, M., Lopez-Valverde, M.A., Garcia, R.R., Roble, R.G., A review of CO2 and CO abundances in the mesosphere (2000) Atmospheric Science Across the Stratopause, 123, pp. 83-100. , Geophys. Monogr. Ser., edited by D. E. Siskind, S. D. Eckermann, and M. E. Summers, AGU, Washington, D. C
  • Lowe, R., Trend in the temperature of the mid latitude mesopause region (1999) First International Workshop on Long-Term Changes and Trends in the Atmosphere, , Indian Inst. of Trop. Meteorol., Pune, India
  • Lowe, R.P., Long-term trends in the temperature of the mesopause region at mid-latitude as measured by the hydroxyl airglow (2002) 276 WE-Heraeus-Seminar on Trends in the Upper Atmosphere, , Wilhelm und Else Heraeus-Stift., Khlungsborn, Germany
  • Lowe, R.P., Gilbert, K.L., Turnbull, D.N., High latitude summer observations of the hydroxyl airglow (1991) Planet. Space Sci., 39, pp. 1263-1270
  • Lowe, R.P., Leblanc, L.M., Gilbert, K.L., WINDII/UARS observation of twilight behaviours of the hysdroxyl airglow at mid-latitude equinox (1996) J. Atmos. Terr. Phys., 58, pp. 1863-1869
  • Lübken, F.J., Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations (1997) J. Geophys. Res., 102, pp. 13441-13456
  • Lübken, F.J., Nearly zero temperature trend in the polar summer mesosphere (2000) Geophys. Res. Lett., 27, pp. 3603-3606
  • Lübken, F.J., No long term change of the thermal structure in the mesosphere at high latitudes during summer (2001) Adv. Space. Res., 28 (7), pp. 947-953
  • Lübken, F.-J., von Zahn, U., Thermal structure of the mesopause region at polar latitudes (1991) J. Geophys. Res., 96, pp. 20841-20857
  • Lübken, F.-J., Hillert, W., Lehmacher, G., von Zahn, U., Bittner, M., Offermann, D., Schmidlin, F., Czechowsky, P., Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign (1994) J. Atmos. Terr. Phys., 56, pp. 1969-1984
  • Lübken, F.J., Fricke, K.H., Langer, M., Noctilucent clouds and the thermal structure near the Arctic mesopause in summer (1996) J. Geophys. Res., 101, pp. 9489-9508
  • McCormick, M.P., Veiga, R.E., SAGE-II measurements of early Pinatubo aerosols (1992) Geophys. Res. Lett., 19, pp. 155-158
  • McLandress, C., Shepherd, G.G., Solheim, B.H., Burrage, M.D., Hays, P.B., Skinner, W.R., Combined mesosphere/thermosphere winds using WINDII and HRDI data from the Upper Atmosphere Research Satellite (1996) Geophys. Res., 101, pp. 10441-10453
  • Meinel, A.B., OH emission band in the spectrum of the night sky, I (1950) Astrophys. J., 3, pp. 555-564
  • Melo Stella, M.J., Lowe, R.P., Russell, J.P., Double-peaked hydroxyl airglow profiles observed from WINDII/UARS (2000) J. Geophys. Res., 105, pp. 12397-12403
  • Meriwether, J.W., High latitude airglow observations of correlated short-term fluctuations in the hydroxyl Meinel 8-3 band intensity and rotational temperature (1975) Planet. Space Sci., 23, pp. 1211-1221
  • Mies, F.H., Calculated vibrational transition probabilities of OH (X2 A) (1974) J. Mol. Spectrosc, 53, pp. 150-180
  • Mlynczak, M.G., Energetics of the mesosphere and lower thermosphere and the SABER experiment (1997) Adv. Space Res., 20, pp. 1177-1183
  • Mlynczak, M.G., A contemporary assessment of the mesospheric energy budget (2000) Atmospheric Science Across the Stratopause, 123, pp. 37-52. , Geophys. Monogr. Ser., edited by D. E. Siskind, S. D. Eckermann, and M. E. Summers, AGU, Washington, D. C
  • Mlynczak, M., A comparison of space-based energy budgets of the mesosphere and troposphere (2002) J. Atmos. Sol. Terr. Phys., 64, pp. 877-887
  • Mlynczak, M.G., Marshall, B.T., A reexamination of the role of solar heating in the O2 atmospheric and infrared atmospheric bands (1996) Geophys. Res. Lett., 23, pp. 657-660
  • Mlynczak, M.G., Solomon, S., A detailed evaluation of the heating efficiency in the middle atmosphere (1993) J. Geophys. Res., 98, pp. 10517-10541
  • Mlynczak, M.G., Mertens, C.J., Garcia, R.R., Portmann, R.W., A detailed evaluation of the stratospheric heat budget: 2. Global radiation balance and diabatic circulations (1999) J. Geophys. Res., 104, pp. 6039-6066
  • Mlynczak, M.G., Roble, R., Garcia, R., Hagan, M., Solar energy deposition rates in the mesosphere derived from airglow observations: Implications for the ozone deficit problem (2000) J. Geophys. Res., 105, pp. 17527-17538
  • Mohanakumar, K., An investigation on the influence of solar cycle on mesospheric temperature (1985) Planet. Space Sci., 33, pp. 795-805
  • Mohanakumar, K., Solar activity forcing of the middle atmosphere (1995) Ann. Geophys., 13, pp. 879-885
  • Mulligan, F.J., Horgan, D.F., Galligan, J.G., Griffin, E.M., Mesopause temperatures and integrated band brightness calculated from airglow OH emissions recorded at Maynooth (53.2°N, 6.4°W) during 1993 (1995) J. Atmos. Terr. Phys., 57, pp. 1623-1637
  • Murgatroyd, R.J., Goody, R.M., Sources and sinks of radiative energy from 30 to 90 km (1958) Q. J. R. Meteorol. Soc., 87, pp. 225-234
  • Myrabo, H.K., Harang, O.E., Temperatures and tides in the high-latitude mesopause region as observed in the OH night airglow emissions (1988) J. Atmos. Terr. Phys., 50, pp. 739-748
  • Nash, J., Extension of explicit radiance observations by the stratospheric sounding unit into the lower stratosphere and lower mesosphere (1988) Q. J. R. Meteorol. Soc., 114, pp. 1153-1171
  • Nelson Jr., D.D., Schiffman, A., Nesbitt, D.J., Orlando, J.J., Burkholder, J.B., H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2A) radical: An experimental dipole moment function and state-to-state Einstein A coefficients (1990) J. Chem. Phys., 93, pp. 7003-7019
  • Nestorov, G., Pancheva, D., Danilov, A.D., Climatic changes of the ionospheric radio wave absorption in the SW-region (1991) Geomagn. Aeron., 31, pp. 1070-1079
  • Nielsen, K.P., Sigernes, F., Raustein, E., Deehr, C.S., The 20-year change of the Svalbard OH-temperatures (2002) Phys. Chem. Earth, 27, pp. 555-561
  • Offermann, D., Donner, M., Knieling, P., Hamilton, K., Menzel, A., Naujokat, B., Winkler, P., Indications of long-term changes in middle atmosphere transports (2003) Adv. Space Res., , in press
  • Ogibalov, V.P., Fornichev, V.I., Kutepov, A.A., Radiative heating effected by infrared CO2 bands in the middle and upper atmosphere (2000) Atmos. Oceanic Phys., 36, pp. 454-464
  • Pendleton, W.R., Espy, P.J., Hammond, M.R., Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow (1993) J. Geophys. Res., 98, pp. 11567-11579
  • Perminov, V.I., Semenov, A.I., Non-equilibrium rotational temperatures of the OH bands with high vibrational excitation (1992) Geomagn. Aeron., 32, pp. 175-178
  • Polyani, J., Sloan, J.J., Detailed rate coefficients for the reactions H + O3 → OH(v',J') + O2 and H + NO2 → OH(v',J') + NO" (1975) Int. J. Chem. Kinet., 1, pp. 51-60
  • Portmann, R.W., Thomas, G.E., Solomon, S., Garcia, R.R., The importance of dynamical feedbacks on doubled CO2-induced changes in the thermal structure of the meosphere (1995) Geophys. Res. Lett., 22, pp. 1733-1736
  • Ramaswamy, V., Stratospheric temperature trends: Observations and model simulations (2001) Rev. Geophys., 39, pp. 71-122
  • Reisin, E.R., Scheer, J., Searching for trends in mesopause region airglow intensities and temperatures at El Leoncito (2002) Phys. Chem. Earth, 27, pp. 563-569
  • Remsberg, E.E., Bhatt, P.P., Deaver, L.E., Seasonal and longer-term variations in middle atmosphere temperature from HALOE and UARS (2002) J. Geophys. Res., 107 (D19), p. 4411. , doi: 10.1029/2001JD001366
  • Richmond, A.D., Ridley, E.C., Roble, R.G., A thermosphere/ionosphere general circulation model with coupled electrodynamics (1992) Geophys. Res. Lett., 19, pp. 601-604
  • Rind, D., Suozzo, R., Balanchandran, N.K., Prather, P., Climate change and the middle atmosphere, 1. The doubled CO2 climate (1990) J. Atmos. Sci., 47, pp. 475-494
  • Rind, D., Balachandran, N.K., Suozzo, R., Climate change and the middle atmosphere. Part II: The impact of volcanic aerosols (1992) J. Clim., 5, pp. 189-208
  • Rishbeth, H., Roble, R.G., Cooling of the upper atmosphere by enhanced greenhouse gases: Modelling the thermospheric and ionospheric effects (1992) Planet. Space Sci., 40, pp. 1011-1026
  • Roble, R.G., Energetics of the mesosphere and thermosphere (1995) The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, 87, pp. 1-21. , Geophys. Monogr. Ser., edited by R. M. Johnson and T. L. Killeen, AGU, Washington, D. C
  • Roble, R.G., On the feasibility of developing a global atmospheric model extending from the ground to the exosphere (2000) Atmospheric Science Across the Stratopause, 123, pp. 53-68. , Geophys. Monogr. Ser., edited by D. E. Siskind, S. D. Eckermann, and M. E. Summers, AGU, Washington, D. C
  • Roble, R.G., Dickinson, R.E., How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? (1989) Geophys. Res. Lett., 16, pp. 1441-1444
  • Roble, R.G., Ridley, E.C., A thermosphere-ionosphere-mesosphere- electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30-500 km) (1994) Geophys. Res. Lett., 21, pp. 417-420
  • Roble, R.G., Ridley, E.C., Dickinson, R.E., On the global mean structure of the thermosphere (1987) J. Geophys. Res., 92, pp. 8745-8758
  • Roble, R.G., Ridley, E.C., Richmond, A.D., Dickinson, R.E., A coupled thermosphere/ionosphere general circulation model (1988) Geophys. Res. Lett., 15, pp. 1325-1328
  • Rodgers, C.D., Taylor, F.W., Muggeridge, A.H., Lopez-Puertas, M., Lopez-Valverde, M.A., Local thermodynamic equilibrium of carbon dioxide in the upper atmosphere (1992) Geophys. Res. Lett., 19, pp. 589-592
  • Romejko, V.A., Dalin, P.A., Pertsev, N.C., Forty years of noctilucent cloud observations near Moscow: Database and simple statistics (2003) J. Geophys. Res., 108 (D8), p. 8443. , doi: 10.1029/2002JD002364
  • Scheer, J., Programmable tilting filter spectrometer for studying gravity waves in the upper atmosphere (1987) Appl. Opt., 26, pp. 3077-3082
  • Scheer, J., Reisin, E.R., Unusually low airglow intensities in the Southern Hemisphere midlatitude mesopause region (2000) Earth Planets Space, 52, pp. 261-266
  • Schmidlin, F.J., The inflatable sphere: A technique for the accurate measurement of middle atmosphere temperatures (1991) J. Geophys. Res., 96, pp. 22673-22682
  • Semenov, A.I., Long-term changes in the height profiles of ozone and atomic oxygen in the lower thermosphere (1997) Geomag. Aeron., 37, pp. 354-360. , in Russian
  • Semenov, A.I., Long-term temperature trends for different seasons by hydroxyl emission (2000) Phys. Chem. Earth, Part B, Hydrol. Oceans Atmos., 25, pp. 525-529
  • Semenov, A.I., Shefov, N.N., Empirical model of hydroxyl emission variations (1999) Int. J. Geomagn. Aeron., 1, pp. 229-242
  • Semenov, A.I., Shefov, N.N., Lysenko, E.V., Givishvili, G.V., Tikhonov, A.V., The seasonal peculiarities of behavior of the long-term temperature trends in the middle atmosphere at the mid-latitudes (2002) Phys. Chem. Earth, 27, pp. 529-534
  • Serafimov, K., Scrafimova, M., Possible radioindications of anthropogenic influences on the mesosphere and lower thermosphere (1992) J. Atmos. Terr. Phys., 54, pp. 847-850
  • She, C.Y., Krueger, D.A., Impact of natural variability in the 11-year mesopause region temperature observation over Fort Collins, CO (41°N, 105°W) (2003) Adv. Space Res., , in press
  • She, C.Y., Lowe, R.P., Seasonal temperature variation in the mesopause region at mid-latitude: Comparision of lidar and hydroxyl rotational temperatures based on WINDII/UARS OH height profiles (1998) J. Atmos. Sol. Terr. Phys., 60, pp. 1573-1583
  • She, C.Y., Yu, J.R., Latifi, H., Bills, R.E., High-spectral-resolution lidar for mesospheric sodium temperature measurements (1992) Appl. Opt., 31, pp. 2095-2106
  • She, C.Y., Thiel, S.W., Krueger, D.A., Observed episodic warming at 86 and 100 km between 1990 and 1997: Effects of Mount Pinatubo eruption (1998) Geophys. Res. Lett., 25, pp. 497-500
  • She, C.Y., Sherman, J., Vance, J.D., Yuan, T., Hu, Z., Williams, B.P., Arnold, K., Krueger, D.A., Evidence of solar cycle effect in the mesopause region: Observed temperatures in 1999 and 2000 at 98.5 km over Fort Collins, CO (41°N, 105°W) (2002) J. Atmos. Sol. Terr Phys., 64, pp. 1651-1657
  • Shefov, N.N., Intensity and rotational temperature variations of hydroxyl emission in the night-glow (1968) Nature, 218, pp. 1238-1239
  • Shefov, N.N., Hydroxyl emission of the upper atmosphere-I. The behavior during a solar cycle, seasons and geomagnetic disturbances (1969) Planet. Space Sci., 17, pp. 797-813
  • Shefov, N.N., Hydroxyl emission (1972) Ann. Geophys., 28, pp. 137-173
  • Shefov, N.N., Piterskaya, N.A., Spectral spatial and temporal characteristics of the background airglow (1984) Polyarn. Sivaniya Svechenie Nochnogo Neba, 31, pp. 23-27
  • Shepherd, G.G., Siddiqi, N.J., Wiens, R.H., Zhang, S.P., Airglow measurements of possible changes in the ionosphere and middle atmosphere (1997) Adv. Space Res., 20, pp. 2127-2135
  • Shepherd, M.G., Reid, B., Zhang, S.P., Solheim, B.H., Shepherd, G.G., Wickwar, V.B., Herron, J.P., Retrieval and validation of mesospheric temperatures from the Wind Imaging Interferometer observations (2001) J. Geophys. Res., 106, pp. 24813-24829
  • Shepherd, M.G., Espy, P.J., She, C.Y., Hocking, W., Keckhut, P., Gavrilyeva, G., Shepherd, G.G., Naujokat, B., Springtime transition in upper mesospheric temperature in the northern hemisphere (2002) J. Atmos. Sol. Terr. Phys., 64, pp. 1183-1199
  • Shepherd, M.G., Rochon, Y.J., Shepherd, G.G., Longitudinal variability of mesospheric temperatures at middle and high latitudes-The WINDII perspective (2002) WE-Heraeus-Seminar on Trends in the Upper Atmosphere, , Wilhelm und Else Heraeus-Stift., Kūhlungsborn, Germany
  • Shved, G.M., Role of airglow in the cooling of the atmosphere near the mesopause (1972) Geomagn. Aeron., 3, pp. 500-501
  • Shved, G.M., Khvorodtovskaya, L.E., Potekhin, I.Yu., Demianikov, A.I., Kutepov, A.A., Fomichev, V.I., Measurement of the quenching rate constant for collisions CO2 (01'0)-O: The importance of the rate constant for the thermal regime and radiation in the lower thermosphere (1991) Atmos. Ocean. Phys., 27, pp. 431-437
  • Shved, G.M., Kutepov, A.A., Oglibalov, V.P., Non-local thermodynamic equilibrium in CO2 in the middle atmosphere. I. Input data and populations of the v3 mode manifold states (1998) J. Atmos. Sol Terr. Phys., 60, pp. 289-314
  • Sigernes, F., Shumilov, N., Deehr, C.S., Nielsen, K.P., Svenøe, T., Havnes, O., Hydroxyl rotational temperature record from the auroral station in Adventdalen, Svalbard (78°N, 15°E) (2003) J. Geophys. Res., 108 (A9), p. 1342. , doi:10.1029/2001JA009023
  • Sprenger, K., Greisiger, K.M., Schminder, R., Evidence of quasi-biennial wind oscillation in the mid-latitude lower thermosphere, obtained from ionospheric drift measurements in the LF range (1975) J. Atmos. Terr. Phys., 37, pp. 1391-1393
  • Stroud, W.G., Nordberg, W., Bandeen, W.R., Bartman, F.L., Titus, P., Rocket-grenade measurements of temperatures and winds in the mesosphere over Churchill, Canada (1960) J. Geophys. Res., 65, pp. 2307-2323
  • Takahashi, H., Clemesha, B.R., Batista, P.P., Predominant semi-annual oscillation of upper mesospheric airglow, intensities and temperatures in the equatorial region (1995) J. Atmos. Terr. Phys., 57, pp. 407-414
  • Takahashi, H., Batista, P.P., Buriti, R.A., Gobbi, D., Nakamura, T., Tsuda, T., Fukao, S., Simultaneous measurements of airglow OH emission and meteor wind by a scanning photometer and the MU radar (1998) J. Atmos. Sol. Terr. Phys., 60, pp. 1649-1668
  • Taubenheim, J., Cossart, G.V., Entzian, G., Evidence of CO2-induced progressive cooling of the middle atmosphere derived from radio observations (1990) Adv. Space Res., 10 (10), pp. 171-174
  • Taubenheim, J., Berendorf, K., Krüger, W., Entzian, G., Height dependence of long-term trends in the middle atmosphere (1994) EGS XIX General Assembly, , Eur. Geophys. Soc., Grenoble
  • Taubenheim, J., Entzian, G., Berendorf, K., Long-term decrease of mesospheric temperature, 1963 through 1995, inferred from radio wave reflection heights (1997) Adv. Space Res., 20, pp. 2059-2063
  • Thomas, G.E., Global change in the mesosphere-lower thermosphere region: Has it already arrived? (1996) J. Atmos. Terr. Phys., 58, pp. 1629-1656
  • Thomas, G.E., Olivero, J.J., Jensen, E.J., Schröder, W., Toon, O.B., Relation between increasing methane and the presence of ice clouds at the mesopause (1989) Nature, 338, pp. 490-492
  • Thomas, G.E., Olivero, J., Noctilucent clouds as possible indicators of global change in the mesosphere (2001) Adv. Space Res., 28 (7), pp. 937-946
  • Thulasiraman, S., Nee, J.B., Further evidence of a two-level mesopause and its variations from UARS high-resolution Doppler imager temperature data (2002) J. Geophys. Res., 107 (D18), p. 4355. , doi:10.1029/2000JD000118
  • Turnbull, D.N., Lowe, R.P., Vibrational population distribution in the hydroxyl night airglow (1983) Can. J. Phys., 61, pp. 244-250
  • Turnbull, D.N., Lowe, R.P., An empirical determination of the dipole moment function of OH(X2A) (1988) Chem. Phys., 91, pp. 2763-2767
  • Turnbull, D.N., Lowe, R.P., New hydroxyl transition probabilities and their importance in airglow studies (1989) Planet. Space Sci., 37, pp. 723-738
  • Weatherhead, E.C., Stevermer, A.J., Schwartz, B.E., Detecting environmental changes and trend (2002) Phys. Chem. Earth, 27, pp. 399-403
  • Weill, G., Christophe, J., Long term variations of OH nightglow emission-Relation to stratospheric humidity? (1977) Dynamical and Chemical Coupling, pp. 85-90. , D. Reidel, Norwell, Mass
  • Woods, T.N., Rottman, G.J., Solar Lyman-alpha irradiance measurements during two solar cycles (1997) J. Geophys. Res., 102, pp. 8769-8779
  • (1995) Scientific Assessment of Ozone Depletion: 1994. Rep. 37, , World Meteorological Organization (WMO), Global Ozone Res. and Manit. Proj., Geneva
  • (1999) Scientific Assessment of Ozone Depletion: 1998. Rep. 44, , World Meteorological Organization (WMO), Global Ozone Res. and Monit. Proj., Geneva
  • Wuebbles, D.J., Kinnison, D.E., Grant, K.E., Lean, J., The effect of solar flux variations and trace gas emissions on recent trends in stratospheric ozone and temperature (1991) J. Geomagn. Geoelectr., 43, pp. 709-718

Citas:

---------- APA ----------
Beig, G., Keckhut, P., Lowe, R.P., Roble, R.G., Mlynczak, M.G., Scheer, J., Fomichev, V.I.,..., Fadnavis, S. (2003) . Review of mesospheric temperature trends. Reviews of Geophysics, 41(4), 1-1 - 1-41.
http://dx.doi.org/10.1029/2002RG000121
---------- CHICAGO ----------
Beig, G., Keckhut, P., Lowe, R.P., Roble, R.G., Mlynczak, M.G., Scheer, J., et al. "Review of mesospheric temperature trends" . Reviews of Geophysics 41, no. 4 (2003) : 1-1 - 1-41.
http://dx.doi.org/10.1029/2002RG000121
---------- MLA ----------
Beig, G., Keckhut, P., Lowe, R.P., Roble, R.G., Mlynczak, M.G., Scheer, J., et al. "Review of mesospheric temperature trends" . Reviews of Geophysics, vol. 41, no. 4, 2003, pp. 1-1 - 1-41.
http://dx.doi.org/10.1029/2002RG000121
---------- VANCOUVER ----------
Beig, G., Keckhut, P., Lowe, R.P., Roble, R.G., Mlynczak, M.G., Scheer, J., et al. Review of mesospheric temperature trends. Rev. Geophys. 2003;41(4):1-1 - 1-41.
http://dx.doi.org/10.1029/2002RG000121